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ABSTRACT

The policy prices adjusted vs. reserves conditioned by solvency in a short term time horizon are considered.
The motivation is to step towards considering insurer as subject of price competitive insurance market.

The intrinsic relationship between policy prices and reserves and its influence on solvency of individual insurance
business are formalized in the framework of the collective risk model. Different approaches to tuning prices vs.
reserves conditioned by solvency requirements expressed in terms of the probability of ruin within finite time
and of the ultimate ruin probability, based on (a) exact numerical technique, (b) new approximations, and (c)
simulation, are discussed.
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1. INTRODUCTION

Insurance is a method of coping with risks, while the object of the theory of risk is to give
a mathematical analysis of random fluctuations in an insurance business and to discuss the
various means of protection against their inconvenient effects.

The insurer is subject of competitive insurance market where the policy prices are among
the primary influences. The prices, the reserves, and solvency of each individual business are
inseparable. Both practical and theoretical aspects of the solvency of insurer and the respective
price and capital requirements are clearly in evidence (see e.g., Section 14.6 of [9]). Developing
the system of solvency testing, the theory of risk is applied, bringing to the forefront either
analytical or simulation approach.

The traditional models of the risk theory have certain recognized shortcomings which arise
from the structure deficiencies rather than merely from the technical restrictions, though the
latter attracted more attention in literature. One of these shortcomings is making no sufficient
allowance for the interdependence between the premium rate and the capital size which makes
some important business aspects overlooked, even as the attention is focused on testing the
financial position of insurer at the annual interval and inflation, return on investments, market
cycles, and certain other premises are allowed to be neglected.

In this paper we discuss a generalization of the collective risk model (see [12], [13]), binding
together the initial capital and the risk premium rate so that the relative safety loading becomes
decreasing, as the initial capital grows. Unlike making the risk premium rate variable and
dependent on the current value of the risk reserve (see e.g., [3], [4], [5]), our approach reflects
the fact that supervision is usually implemented by testing the financial position of each insurer
at regular intervals, normally annually. It might rouse the company to scheduled actions such as
annual change of prices and reserves. The disadvantages of such a ”scheduled” price vs. solvency
optimization is substantially compensated by solvency requirements expressed in terms of the
finite time ruin probabilities which in a sense preserves the risk reserve from being too small
frequently in between the accounting moments.

In Section 2 we revise an example by Seal, applying exact numerical techniques. Our conse-
quential aim is to impeach his contention formulated in [15], [16] which regards this example
as ”an emphatic illustration of the poverty of asymptotic numerical approximations for the
practical man” and to present the adequate asymptotic results.

In Section 3 we develop examination by Seal and demonstrate crude and delicate tuning of
price vs. reserve conditioned by solvency.

In Section 4 we revise an exact numerical technique applied to probabilities of ruin within finite
time.



In Section 5 we suggest an adjustment of the collective risk model where the safety loading 7,
depends on the initial capital u and propose new approximations for the probabilities of ruin,
as u increases. Unlike the standard Cramér-Lundberg approximations, they are suitable for
the framework considered in Sections 2 and 3. It resolves the shortcoming perceived by Seal.
Though approximations are more flexible than the exact numerical technique, we are fully
sharing the opinion that any formula approach inevitably has rigid limitations. A reputed
contender of the formula approach is simulation. In Section 6 we briefly consider the stochastic
bundle approach described in Section 14.6 of [9] and point out several complications emerging
in the modified risk model.

2. AN OBSERVATION BY SEAL

The theory of risk focuses its attention on the reference insurer through the outflow process,
looking first at claim numbers, then at the distribution of claim sizes and finally putting these
two together into an aggregate claim amounts process. The income process, which is the initial
capital plus premium income, is introduced in a rather simple way, growing linearly in time
with a constant intensity c¢. The resulting surplus process of the insurance business is generated
as initial capital plus premium income minus outflow.

This bird’s eye view has been formalized in the notion of the collective risk model which remains
up to now one of the main actuarial premises concerned with final business results. Ignoring
individual policies, this model views an insurance business as a whole: claims occur from time
to time and are settled by the company, while on the other hand the company receives a
continuous flow of risk premiums from the policyholders.

Mathematically, the surplus process at any operational time ¢ is described by the risk reserve

process R(t) =u — Eﬁi(f) Y + ct starting at time ¢t = 0, where N(¢) is the number of claims
occurred up to time ¢, u > 0 is the initial risk reserve. The insurance company is supposed
to pay premiums as they are received into a risk reserve and ¢ > 0 is the risk premium rate,
{T;}i>1 are (i.i.d.) interclaim times and {Y;};>: are (i.i.d.) amounts of claims.

Supervision is usually implemented by testing the financial position of each insurer at regular
intervals, normally annually. In practice, adverse fluctuations often occur in consecutive years,
giving rise to considerable accumulation of losses. This may not be revealed by an analysis
limited to one calendar year. But the short term time horizon, in most cases one year, is the
fundamental building block for the long-term analysis.

Mathematically, the probability of ruin (¢, u) = P{info<s<; R(s) < 0} within the time in-
terval (0, t], which particular case is the probability of ultimate ruin t(u) = ¢(+o0, u), is an
important scientific paradigm: within the collective model the solvency requirement are sim-
ilar to the restrain to have the probability of ruin at a certain prescribed level all along the
accounting period.

Two reputed influences are as follows. First, the insurer typically needs to charge loaded
premiums sufficient for business to take its normal course over a long time. The amount
T = cET1/EY; — 1, called the relative safety loading, reflects this need. Indeed, since cT;
is the premium acquired and Y; is the claims amount paid out on the ¢-th ”step” which is the
time between (i — 1)-th and é-th claims, the condition 7 > 0 means that successful ”steps”
are persistent. The opposite, 7 < 0, means that successful ”steps” are rare and, in total, the
business is trading unfavorably and is liable to ruin. Second, the insurers are required by law
to keep the necessary reserves to safeguard solvency and, in particular, to meet early claims.
Acting on a competitive insurance market, the insurer might be interested to establish a balance
of price (by decreasing the loading 7) vs. reserve u, aiming legal or desired level of solvency
expressed by the probability (¢, u) within the accounting period (0, t].

To our opinion, an early attempt to examine this balance was made by Seal. In [15] he considers
the collective risk model where exponential claims are occurring as a Poisson process. He takes
unit Poisson intensity, so that the unit of time is the expected interval between claim occurences,
and unit exponential distribution parameter, so that the average individual claim size is the
monetary unit. In [16] he sharpens his outlines by considering constant unit claims.

Basing on an exact formula which Seal attributed to Arfwedson [1], for no-loading 7 = 0 and
for 7 = 0.1 which is a 10% risk loading in this model, he calculates numerically the probability
of non-ruin within the interval (0,¢], U(¢, v) = P{infocs<t R(s) > 0}.

Seal’s analysis (see [16], pp. 128 — 129; we adapted it to suit the model in [15]) of the calculations
which we partly reproduced from [15], Tables 2 and 3, in our Tables 1 and 2, is as follows: ” with
no risk loading — which is known to lead to ultimate ruin whatever (finite) value v has — and
an initial risk-reserve of as little as ten times the mean unit claim there is still an 70.5% chance



of not being ruined during an interval within which 50 claims are expected.” ”One sees how
far 50 is from infinity so far as the probability of ruin is concerned!” exclaimed Seal. Table 2
indicates that with u as large as 110 there is a 99.8% chance of not being ruined in an interval
during which 600 claims are expected.

Seal’s conclusion is that it is an "emphatic illustrations of the poverty of asymptotic numerical
approximations for the practical man”. He writes: ” The real value of risk theory is, we believe,
to the entrepreneur just starting out in business with a casualty insurance company. It is the
early claims that worry him not those that occur after he has built a successful business!”

Table 1. Probability of non-ruin U (¢, u) for Poisson-exponential model, 7 = 0.1

U

t 0 1 2 3 4 5 6 7 8 9 10

1 | 0.53660| 0.76194| 0.88029| 0.94085| 0.97121| 0.98616| 0.99342| 0.99690| 0.99855| 0.99933| 0.99969
0.28040| 0.48811| 0.64558| 0.76049| 0.84164| 0.89734| 0.93464| 0.95906| 0.97474| 0.98463| 0.99077
10 | 0.21457| 0.38742| 0.53087| 0.64690| 0.73857| 0.80943| 0.86312| 0.90305| 0.93224| 0.95323| 0.96810
20 | 0.16816| 0.30939| 0.43267| 0.53879| 0.62889| 0.70438| 0.76683| 0.81785| 0.85904| 0.89191| 0.91785
30 | 0.14798| 0.27393| 0.38578| 0.48419| 0.57000| 0.64413| 0.70760| 0.76147| 0.80678| 0.84458| 0.87584
40 | 0.13621| 0.25289| 0.35738| 0.45033| 0.53247| 0.60458| 0.66744| 0.72188| 0.76871| 0.80872| 0.84269
50 | 0.12836| 0.23872| 0.33804| 0.42696| 0.50618| 0.57639| 0.63827| 0.69253| 0.73985| 0.78090| 0.81631

t 0 11 22 33 44 55 66 7 88 99 110
50 | 0.12836| 0.84671| 0.98438| 0.99904| 0.99996 1.0 1.0 1.0 1.0 1.0 1.0
100| 0.11001| 0.77244| 0.95621| 0.99373| 0.99933| 0.99991 1.0 1.0 1.0 1.0 1.0
150| 0.10282| 0.73611| 0.93517| 0.98695| 0.99786| 0.99971| 0.99997 1.0 1.0 1.0 1.0
200( 0.09902| 0.71512| 0.92050| 0.98080| 0.99602| 0.99929| 0.99989| 0.99998| 0.99999 1.0 1.0

400( 0.09343| 0.68177| 0.89287| 0.96584| 0.98979| 0.99716| 0.99927| 0.99982| 0.99994| 0.99998| 0.99999
600( 0.09191| 0.67215| 0.88372| 0.95977| 0.98652| 0.99565| 0.99865| 0.99960| 0.99986| 0.99996| 0.99998
oo | 0.09091| 0.66556| 0.87697| 0.95474| 0.98335| 0.99387| 0.99775| 0.99917| 0.99970| 0.99989| 0.99996

Table 2. Probability of non-ruin U(t, u) for Poisson-exponential model and no risk loading

U

t 0 1 2 3 4 5 6 7 8 9 10

1 | 0.52378| 0.75406| 0.87580| 0.93842| 0.96993| 0.98551| 0.99309| 0.99674| 0.99848| 0.99929| 0.99967
0.24910| 0.45252| 0.61280| 0.73344| 0.82085| 0.88216| 0.92399| 0.95183| 0.96996| 0.98154| 0.98881
10 | 0.17729| 0.33697| 0.47678| 0.59522| 0.69263| 0.77066| 0.83168| 0.87837| 0.91338| 0.93916| 0.95782
20 | 0.12576| 0.24501| 0.35614| 0.45764| 0.54860| 0.62869| 0.69804| 0.75713| 0.80675| 0.84783| 0.88137
30 | 0.10279| 0.20198| 0.29653| 0.38535| 0.46767| 0.54295| 0.61092| 0.67157| 0.72505| 0.77168| 0.81191
40 | 0.08907| 0.17577| 0.25939| 0.33912| 0.41433| 0.48454| 0.54942| 0.60878| 0.66260| 0.71093| 0.75395
50 | 0.07969| 0.15768| 0.23343| 0.30638| 0.37584| 0.44158| 0.50321| 0.56053| 0.61341| 0.66181| 0.70578

t 0 11 22 33 44 55 66 7 88 99 110
50 | 0.07969| 0.74543| 0.96330| 0.99701| 0.99985 1.0 1.0 1.0 1.0 1.0 1.0
100| 0.05638| 0.59118| 0.87760| 0.97439| 0.99617| 0.99958| 0.99997 1.0 1.0 1.0 1.0
150| 0.04605| 0.50370| 0.80017| 0.93780| 0.98492| 0.99712| 0.99957| 0.99995 1.0 1.0 1.0

200| 0.03988| 0.44602| 0.73716| 0.89789| 0.96746| 0.99145| 0.99813| 0.99966| 0.99995| 0.99999 1.0
400| 0.02821| 0.32649| 0.57755| 0.76124| 0.87868| 0.94462| 0.97728| 0.99161| 0.99721| 0.99916| 0.99977
600| 0.02303| 0.26976| 0.48941| 0.66709| 0.79802| 0.88612| 0.94037| 0.97100| 0.98690| 0.99450| 0.99786
00 always zero for finite u

3. PRICE VS. RESERVE BALANCE IN THE RISK MODEL: AN EXAMPLE

To our opinion, a sensible extension of the considerations by Seal are crude and delicate tuning
of price (or rather its safety loading component which is flexible) vs. reserve conditioned by
solvency expressed through the ruin probabilities. The former consists in the gradual reduction
of the safety loading roughly sketched as passing from Table 1 to Table 2, looking back at ) (u)
and at wu, the later consists in finer time considerations, since the magnitude of u and 7 is
roughly chosen, and is based on more insight at (¢, u).



Our first concern is an example of what we called crude tuning. As Seal in [15], consider the
Poisson-exponential risk model with unit Poisson intensity and unit parameter of the exponen-
tial claim size distribution. Assume rather arbitrarily the starting value of the initial risk reserve
to be up = 10 and the respective value of the ultimate ruin probability to be ¥ (ug) = 0.1 (in
practice they could be those values which have been applied on the preceding accounting pe-
riod). Evidently, using the explicit formula (1) below, the safety loading calculated numerically
must be 7 =0.26113.

The actuary is faced the problem to analyze the following balance: to decrease the safety loading
(i.e., to reduce prices) respecting solvency requirements e.g., to keep the ultimate ruin proba-
bility between 0.1 and 0.05 (too small values might be considered superfluous and unrealistic),

by means of a sensible increase of the initial risk reserve w, say up to the values in between
u = 20 and v = 60.

Once the exact result like (1) below is available, one easily constructs a lower bound for 7 as
function of u: for each value of u one should solve the equation (1+7)~!exp(—ur(1+7)7t) =
0.05 w.r.t. 7. But the rate of decrease of 7, as u increases, appears inscrutable. Moreover, the
link between the lower bound and the initial values which were uo = 10 and %(ug) = 0.1 in
our example, are rather implicit. This approach appears highly sensible to any deviation from
the original model assumptions.

The standpoint might be revised: one may assign certain parametric families e.g., 7, = au™",

or 7, = (Inu)™%, k > 0, a > 0, which mirror more or less aggressive price policy, aiming
evaluation of the parameters of these families according to solvency and capital requirements.
To our opinion, this approach sheds more light at the process of decision making. Fortunately,
it beautifully complies with the refined asymptotical approach, as u increases, which will be
developed for the general claim size and interclaim times distributions in Section 5.
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Fig. 1. Constant safety loading 75" = 0.26113 (thick line), variable safety loadings 7 = 0.31636 w—1/12
(dashed line with long segments), 3 = 0.68158 u=3/12 | {3 = 1.468424~9/12, 7Y = 2.15534 4~ 11/12
(prick line) and the ultimate ruin probabilities g (u) = (1 + Tﬁk))_l exp(—uTﬁk)(l + T,Ek))_l) , conditioned

by %5(10) =0.1, k=0,1,2,3,4.



7153) = 1.46842u~9/12, 7'184) = 2.15534u~'*/12 and the respective ultimate ruin probabilities
Yr(u) = (1+ 7',(/6))_1 exp(—uﬂsk)(l + quk))_l), conditioned by #(10) =0.1, k=0,1,2,3,4.

One sees that only the rate 7154) is nearly satisfying our original requirements. However, if the
solvency requirements will be lowered at 0.025 the attention should be paid to 7153) .

Delicate tuning refines these considerations allowing for finitude of the time interval. Indeed,
we based our previous considerations on the ultimate ruin probability 1(u) which is merely an
upper bound for (¢, u), whenever finite time ¢ is concerned. This idea was basic in Section
2 when safety loading was assumed zero but non-ruin remained rather probable for certain
finite ¢.

On Fig. 2 below we present the probabilities (¢, u) of ruin within finite time ¢ for the rates
72 = 0.68158u=%/12 and 7i°) = 1.46842u/12 and for u = 20 and 30, calculated numeri-
cally by applying the exact formula (2) below. Evidently, ¥2(20) = 0.0317, ¥-(30) = 0.0122,
13(20) = 0.0589, 13(30) = 0.0589 will be considerably undershot if e.g., t = 200.

4. EXACT NUMERICAL METHODS

The implementations of Seal and the examples of Sections 2 and 3 are crucially based on the
exact numerical methods. Seal was based on a numerical integration worked out for the Poisson
claims arrival. It is described in details in his books [14], [17]. The calculations of Section 3 apply
the famous Cramér exact formula (1), and the formula (2) which can be found for py =c=1
in [2], [7], and in [11].

ASSERTION. In the Poisson-exponential risk model

(o) = gexm—u(cu — 0/ (1)
and L
vt = 6w - [ flastude @

for any u > 0, where
flz;t,u) = (N ew)(1+ N ew — 24/ cpcosz) ™t
X exp (u (\/Wcosx - 1) +tep (2 N cpcos T — Afep — 1))
x [cos (umsin :13) — cos (umsinx + 2:::)] .

It is worth mentioning that (2) was derived in [11] as a corollary of the following result which
supplies an exact numerical technique for a non-Poisson claims arrival.

THEOREM 1. Let the sizes of claims {Y;}i>1 and the interclaims times {T;}i>1 be i.i.d. and
mutually independent. Let Y1 be exponential with a positive parameter p and the Laplace
transform of Ty be y(a) = Ee Tt o> 0. Then for any u > 0

o [ et wdt = y() exp{-un(1 - y(@))}, @ >0,
0
where y(a) is a solution of the equation

y(a@) =y(a+cu(l —y(a))), a>0.

5. APPROXIMATIONS

Any formula approach inevitably has its limitations. The limits of the exact methods are
particularly tights. Therefore the risk problem was attacked by asymptotic methods. The most
famous are the Cramér-Lundberg approximations like

lim e*“y(u) = C, (3)

U—00



where C' is the Cramér-Lundberg constant, and

lim sup [ (t, u)e™ — C @ (4, D2y ()] = 0, (4)

U—00 t>0

where ® (., p2y)(t) is the Normal probability distribution function (see e.g., [6]).
Going back to the Section 2, the discontent of Seal who declared poverty of the asymptotic
numerical approximations clears up when we conceive the major restriction of (3) and (4) which
in fact is that we must have ¢ constant, as u is growing. It means e.g., that we are allowed
to apply (3) and (4) for approximations of the thick line on Fig. 1, but not allowed to apply
these results for approximation of dashed ones. To our opinion, Seal pointed implicitly this
gap between asymptotical and exact numerical methods by an extreme case of no-loading, or
extremely small ¢, and rather large u. However, we blame certain deficiency of a particular
risk model, rather than asymptotic approximations approach per se. As a conclusion, we have
to refine the collective risk model and to extend the approximations (3) and (4) to make them
valid within this new, refined, model.
Introduce 7, > 0 depending on u and such that 7, — 0 monotonously, as u grows to infinity,
starting from a certain positive value wug. The particular choice of 7, depends on external
factors and the motivation deserves a separate discussion outside the scope of this paper.
For i.i.d. random vectors (7;,Y;), @ = 1,2,..., define a series of the risk reserve processes
R,(t) =u-— EN(t) Y; + ¢yt , where the premium rate is ¢, = (14+7,)EY1/ET; . For i =1, 2,
introduce i.i.d. random variables X, ; = Y; —¢,T; and put Sy , = El 1 Xu,i, Up = Ez:l T
For the p.d.f. By,(z,y) = P{Xu,1 < z,T1 <y} and for a positive solution sz, of the Lundberg
equation

Eexp(%uXu,l) =1

introduce an associate p.d.f. by B, (dz,dy) = e**B,(dz, dy). Introduce the associated se-
quence {(Xu,i,Tu,i)}iz1 of iid. random vectors having the p.d.f. By(z,y), and Sp,. =
2?21 Xu,i: Un,u = E?:l Tu,i- Put

By(ty, t2) = // ihatt0) B, (dr, dy),
t1,t2 Z // z(t1x+tzy (dx dy)
’] = EXZ 1T1 )

il = EX, T, 4,j=0,1... .

As usual, asterisk denotes convolution. Introduce

my =70, D2 = (U0 — 207 T - (7,070 (L),
1
Cu= 5 o (- ;::1 = [P(Sn,u > 0) +P(Snu < 0)])
In the aggregate with the approximations s, = a17y + 0272 +..., My = M_17, * +mo+my 7, +

, D2 =v 37, 3+0 o7, 2+0 g7, +...,and C, = 1+¢;7y+..., as u — oo (see Theorems
3 1 3 2 3.3, and 4.1 in [12]), this ”scheme of series” counterpart of the approximations (3) and
(4) constitutes the main result of this Section.

THEOREM 2. In the risk model with the p.d.f. By having a bounded density w.r.t. Lebesque
measure on R?, assume that ¢, = (1 + 7,)EY1/ETy with 7, > u>/*2 and for a sufficiently
large ug >0

o0 o0

L. sup // |Bu(t1, t2)[Pdtidts < oo, sup // lpu(ty, t2)[Pdtidts < 0o for some p>1,
u>uo —00 o u>ug —00

2. sup Ee?Xuil « 0o, sup Ee® ¥l < o0 for some a >0,

u>ug u>ug

3. D?>= lim D?>0.

U—00



Then
il;l(:)) |l/}(t> u) - Cueizuu(ﬁ(muu,Dﬁu) (t)| = Q((Tuu)il/zeizuu) ) (5)
as u — Q.

The following result is a corollary of Theorem 2.

THEOREM 3. In the Poisson-exponential risk model assume that ¢, = (1 + 7,)EY1 /ET) with
Tu = w312 Then

iglg |¢(t7 u) - Cue_%uuq)(muu,Dﬁu) (t)| = Q((Tuu)_l/ze_%uu) ) (6)

as u — 0o, where s, = p1,/(1+74), my = p/( A1+ 1)), D2 = 2u/(X273), and C, =
1/(1+7,).

Unlike (3) and (4), (5) and (6) are suitable for the approximation of the dashed lines on
Fig. 1. We bound ourselves by a numerical example where the finite ruin probabilities (¢, u)
are concerned, comparing the exact values calculated numerically by means of (2) and the
approximations calculated by means of (6) for 7> = 0.68158 /12 and 7(¥ = 1.46842u /12
and v =20 and 30.
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Fig. 2. Exact values of ¢(t, u) (lines starting from origin) and the approximations 9 [4ppr](t, u) = Cye™ >
P (1 u, D2 u)(t) for 7 = 0.68158 u=5/12 | u = 20 (upper left) and u = 30 (lower left), and for 7> =
1.46842u~9/12 4 = 20 (upper right) and u = 30 (lower right), A= =1.



It is worth noting that if a better accuracy is desired, as uw grows, (5) and (6) should be
refined e.g., by the asymptotic expansions like in [10]. The same should be done to restore the
approximations force if only moderate or even small values of u are available.

We finish this Section by a remark that Theorem 2 is suitable for various generalizations of
the Poisson-exponential model where there are no exact formulas like (1) and (2), and even no
exact numerical technique as in Theorem 1, or in the books [14] and [17].

Let the (ii.d.) amounts of claims {Y;};>1 be independent on the (i.i.d.) inter-occurrence
times {7j};>1. Let Y7 be Gamma with the shape parameter § and the scale parame-
ter p, Tp be Gamma with the shape parameter a and the scale parameter A, all these
parameters being positive. Then (see Example 3.1 in [12]) a1 = 2ap/(Bla+5)), az =
—dap(2a +P)/(30%(a + B)?), a3 = 2au(lda’® +17aB +56%)/(98%(a + £)®), m_1 = ap/A,
my = —2pa(2a+ B)/(BAB(a + B)), mi = 2ua(2a + B)/(BAF*(a + B)), v_3 = af(a + B)u/\?,
v_ = 0, which yields approximations to s¢,, m,, D?, C,. The conditions of Theorem 2 are
satisfied and the approximation (5) is therefore valid.

6. SIMULATION

The idea of simulation approach in the standard risk model within finite time horizon ¢ is
based on simulation of the risk reserve as difference between incoming premiums and outgoing
claims (see e.g., [9], Section 1.3, Fig. 1.3.2) and on consequent derivation of a stochastic bundle
(see e.g., [9], Section 13.2, Fig. 13.1.5) comprising N independent risk reserve realizations. This
direct approach can be refined e.g., by applying the importance sampling idea (see e.g., [3]),

but the essence remains as above. . .
Daykin et al. wrote: ”Once a ruin barrier has been defined, the simulated paths of the course

of business which pass below the barrier are counted as ruin. Then the ratio of the number of
Tuins ng,uin to the total number N of realizations in the simulation gives an estimate of the
probability of ruin. A visual inspection of the bundle of simulated paths can provide a good
idea of the risk structure. Imagination can complete the bundle of the paths of the density
configuration, which is illustrated in Fig. 13.1.4.” ([9], p. 361).

In our case the ruin barrier is fixed and zero. Instead, which is equivalent when the premium
rate c is constant and independent on w, one should choose w such that the ruin probability
(t,u) remains within certain limits for a given c¢. The equivalence is due to the fact that
when c is constant and independent on w the shape of the simulated bundle is invariant under
shifting the initial capital up and down.

When the premium rate ¢ depends on the initial capital u, as in Sections 3 and 5, shifting
1 means shifting ¢, which produces deformation of the entire bundle of simulated paths. The
evaluation of the solvency margin by the "up and down shifting” of a single bundle of simulated
paths gets no more possible and each new trial would require evaluation of the bundle of
simulated path anew. It might increase dramatically the simulation complexity.
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