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1. Introduction: deficiency of traditional Risk Theory
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• Quotation from H.Bohman’ (p. 2) farewell interview as retiring Chief Editor of the
Scandinavian Actuarial Journal:

“I was for a long time deeply involved in this theory, working on the probability of
ruin, but I am hesitant over it now . . . From a practical point of view, the theory
of collective risk, as initiated by Filip Lundberg, has missed the point, because the
underlying model is unrealistic, too simplified. For one thing, a stationary business
should give stationary reserves, as predicted by the control theory.”

• Quotation from C. Philipson (p. 68):

“From the development of the classical form [of the risk theory. — V.M.] two
lines of development have branched out, one refers to the generalization of the
fundamental assumptions . . . The other refers to the extensions of the decision
theory . . . These lines of development are, however, all based on the fundamental
conception of the collective risk theory, which was created by Filip Lundberg . . . ”
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• Quotation from K.Borch (p. 451):

“We have now reached the point where the actuarial theory of risk again joins
the mainstream of theoretical statistics and applied mathematics. Our general
formulation of the actuary’s problem leads directly to the general theory of optimal
control processes or adaptive control processes . . .

The theory of control processes seems to be “tailor–made” for the problems
which actuaries have struggled to formulate for more than a century.”

• Quotation from C.D.Daykin, T. Pentikäinen, M. Pesonen (Ch. 1, Sec. 5.5, p. 154):

“It is worth mentioning that the classical analytical methods and simulation should
not be regarded as being in competition. A general rule is that an analytical
technique should always be used wherever it is tractable. On the other hand, the
temptation should be resisted to manipulate the premises of the model in order
to make the analytical calculations possible, if that can only be done at the cost
of the applicability of the model to real–world conditions. If that is done, as is
often the case in theoretically–orientated risk theory, a warning of the restricted
applicability — or non–applicability — should be clearly given. The wide realm
of application of simulation methods begins at the frontier where other methods
become intractable.”
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2. Managing solvency: simulation analysis of insurance
risk process, scenario-based DFA, EC Directives
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3. Modelling of multiperiodic controlled insurance
process
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Multiperiodic controlled insurance process
General multiperiodic insurance process with annual accounting
and annual control interventions

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .

According to this diagram (for k = 1, 2, . . . ), at the end of (k − 1)-th year the state
variable wk−1 is observed. It describes the insurer’s position at that moment. Then, at the
beginning of k-th year the control rule γk−1 is applied to choose the control variable uk−1.
Then k-th year probability mechanism of insurance unfolds; the transition function of this
mechanism is denoted by πk. It defines the insurer’s position at the end of the k-th year.

Singleperiodic (annual generic) risk models

• Diffusion
• Poisson–Exponential (classical)

Scenarios of Nature
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Random processes formalism

Set Y0 = {w0} and for k = 2, 3, . . . put

Yk−1 = {w0, . . . , wk−1; u0, . . . , uk−2}
for the “history” up to the (k − 1)-th year inclusively. Introduce

πk(Yk−1, uk−1 ; dwk) = πk(w0, . . . , wk−1, u0, . . . , uk−1 ; dwk),

γk−1(Yk−1 ; duk−1) = γk−1(w0, . . . , wk−1, u0, . . . , uk−2 ; duk−1)

called transition function of the probability mechanism (t.f.p.m.) of insurance and transition
functions of control mechanism (t.f.c.m.) respectively.

Under certain mild regularity conditions on the measurable spaces (W, W) and (U, U) the
initial distribution π0(·) and the families πk(·; ·), k = 1, 2, . . . , and γk(·; ·), k = 0, 1, . . . ,
define over the elementary state space (Ω, F) a random sequence (Wk, Uk), k = 0, 1, . . . ,
having finite-dimensional distributions

Pπ,γ{W0 ∈ A0, U0 ∈ B0, . . . , Wn ∈ An, Un ∈ Bn} =

∫
A0

π0(dw0)

×
∫

B0

γ0(w0 ; du0) . . .

∫
An

πn(Yn−1, un−1 ; dwn)

∫
Bn

γn(Yn ; dun).
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Singleperiodic (annual generic) Poisson–Exponential risk model

Poisson–Exponential (or classical) risk model: the risk reserve at time t is

Rs(u, c, τ ) = u + (1 + τ )c · s − Vs, Vs =

N(s)∑
i=1

Yi, 0 � s � t,

where u is the initial risk reserve, c is the risk premium rate, τ is the adaptive premium
loading, t is the year duration, {Ti}i�1 and {Yi}i�1 are i.i.d. and mutually independent,
where Ti are the interclaim times and Yi are the amounts of claims, exponentially distributed
with parameters λ > 0 and µ > 0, respectively, N(t) is the largest n for which

∑n
i=1 Ti � t

(we put N(t) = 0 if T1 > t).
Note that

EVs =
λ

µ
s, s � 0,

so the premium rate c =
λ

µ
(when λ and µ are known) is calculated according to the Equity

(Expected value) Principle.
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Singleperiodic (annual generic) diffusion risk model

Diffusion risk model:

Rt(u, τ ) = u + (1 + τ )µt − V (t), V (t) = µt + σWt, t � 0,

where u is the initial risk reserve, Wt is a standard Brownian motion, µ is the premium rate
calculated according to the expected value principle, i.e., EV (s) = µs, τ is the adaptive
premium loading, and σ > 0 is a constant diffusion coefficient, DV (s) = σ2s. Put

Mt(u, τ ) = inf
0<s�t

Rs(u, τ ).

The couple (Rt, Mt) is taken generic for the state variable which describes insurer’s
annual financial experience.

The couple (u, τ ) generates two-dimensional control variable.

Rigorous definition of a model and synthesis of the adaptive control rules satisfying the
desirable performance criteria is the central problem.
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4. Synthesis of adaptive control rules in generic models

Definition 1. The target value uµ,σ(α, t) of the risk reserve corresponding to a level
0 < α < 1 is a positive solution of the equation

ψt(u; 0) = P{Mt(u, 0) < 0} = α. (1)

Assuming that duration of the incoming year is t, we mean by z a deviation, either positive
or negative, of the past-year-end risk reserve from uµ,σ(α, t). Case z < 0 means deficit, case
z > 0 means surplus.

Definition 2. The strategy1

uz,t = uµ,σ(α, t) + z and τz,t = − z

µt
, z ∈ R, (2)

is called the basic adaptive strategy.

For 0 < α < 1, introduce cα = Φ−1(1 − α/2).

1Since the initial capital uz,t may not be negative, z > −uµ,σ(α, t) = −σ
√

t cα. Bear it in mind when put z ∈ R for simplicity.
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Theorem 1. For 0 < α < 1, the solution of equation (1) may be written as

uµ,σ(α, t) = σ
√

t cα. (3)

Theorem 2. For z ∈ (−σ
√

t cα,∞) and for the control strategy (2), one has

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}
= 1 − Φ(cα) + exp

{
2

z

σ
√

t

(
cα +

z

σ
√

t

)}
Φ

(
− 2

z

σ
√

t
− cα

)
. (4)

Theorem 3. For z ∈ (−σ
√

t cα,∞) and for the control strategy (2), the probability

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}
,

regarded as a function of z, is monotone decreasing, as z increases.
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Definition 3. The lower alarm barrier of a zone with target value uµ,σ(α, t) and with
level β of probability of ruin, 0 < α < β < 1, is uµ,σ(α, β, t) = uµ,σ(α, t) + zµ,σ(α, β, t),
where zµ,σ(α, β, t) < 0 is a solution of the equation

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}
= β. (5)

Theorem 4. For 0 < α < 1, the solution of equation (5) may be written as

zµ,σ(α, β, t) = −σ
√

t xα,β,

where xα,β > 0 is a unique root of the equation

1 − Φ(cα) + exp{−2x(cα − x)}Φ(2x − cα) = β. (6)

Table 1. Values of xα,β calculated numerically using (6).

β = 110α% β = 120α% β = 130α% β = 140α%

α = 0.1 cα = 1.645 xα,β = 0.7121 xα,β = 0.7522 xα,β = 0.7897 xα,β = 0.8249

α = 0.05 cα = 1.960 xα,β = 0.8360 xα,β = 0.8736 xα,β = 0.9090 xα,β = 0.9422

α = 0.01 cα = 2.576 xα,β = 1.0754 xα,β = 1.1098 xα,β = 1.1423 xα,β = 1.1730
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Definition 4. Assume that 0 < α < β < 1. The strategy

�
uz,t =

⎧⎪⎨
⎪⎩

uµ,σ(α, β, t), z < zµ,σ(α, β, t),

uµ,σ(α, t) + z, zµ,σ(α, β, t) � z � 0,

uµ,σ(α, t), z > 0

(7)

and

�
τ z,t =

⎧⎪⎪⎨
⎪⎪⎩

τµ,σ(α, β, t), z < zµ,σ(α, β, t),

− z

µt
, zµ,σ(α, β, t) � z � 0,

0, z > 0,

(8)

where

τµ,σ(α, β, t) = −zµ,σ(α, β, t)

µt
,

is called zone-adaptive control strategy.
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Theorem 5. For 0 < α < β < 1, the zone-adaptive control strategy in the diffusion
model is

�
uz,t =

⎧⎪⎨
⎪⎩

σ
√

t (cα − xα,β), z < −σ
√

t xα,β,

σ
√

t cα + z, −σ
√

t xα,β � z � 0,

σ
√

t cα, z > 0

(9)

and

�
τ z,t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ

µ
√

t
xα,β, z < −σ

√
t xα,β,

− z

µt
, −σ

√
t xα,β � z � 0,

0, z > 0.

(10)
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Definition 5. For the strategy (7)–(8), the random variable

Sz,t =

⎧⎪⎪⎨
⎪⎪⎩

0, uµ,σ(α, β, t) � Rt(
�
uz,t,

�
τ z,t) � uµ,σ(α, t),

Rt(
�
uz,t,

�
τ z,t) − uµ,σ(α, t), Rt(

�
uz,t,

�
τ z,t) > uµ,σ(α, t),

−(uµ,σ(α, β, t) − Rt(
�
uz,t,

�
τ z,t)), Rt(

�
uz,t,

�
τ z,t) < uµ,σ(α, β, t)

is called annual excess (of either sign) of capital.
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5. Performance of the adaptive control strategies

� NO “GLOBAL OPTIMALITY CRITERION” (A FUNCTIONAL) IS FORMULATED

Targeting, or ability to keep the risk reserve inside a strip zone associated with the target
value uµ,σ(α, t), is the central property of zone-adaptive strategies.

Theorem 6. In the homogeneous multiperiodic diffusion risk model, for the basic and
the zone-adaptive strategies and for each k = 1, 2, . . . ,

Eπ,γ{capital at the end of year k} = σ
√

t cα.

Solvency. The following result is fundamental.

Theorem 7. In the homogeneous multiperiodic diffusion risk model, for the zone-
adaptive (α, β) strategy and for each k = 1, 2, . . . ,

Pπ,γ{first ruin in year k} � β.

Theorem 8. In the assumptions of Theorem 7, for each integer n,

Pπ,γ{ruin within n years} =
n∑

k=1

Pπ,γ{first ruin in year k} � nβ.
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Dynamic solvency provisions. Bearing in mind Definition 5, consider

Eπ,γSn =
n∑

k=1

Eπ,γS
(z(W

〈1〉
k−1),t)

,

where

Eπ,γS
(z(W

〈1〉
k−1),t)

=

∫
W

P (w0, dw1) . . .

∫
W

P (wk−2, dwk−1)

×
( ∫

{w〈1〉
k >σ

√
t cα}

(w〈1〉
k − σ

√
t cα)P (wk−1, dw

〈1〉
k × {0, 1})

−
∫
{w〈1〉

k <σ
√

t (cα−xα,β)}
(σ
√

t (cα − xα,β) − w
〈1〉
k )P (wk−1, dw

〈1〉
k × {0, 1})

)
.

Theorem 9. In the homogeneous multiperiodic diffusion risk model, for the zone-
adaptive (α, β) strategy and for each k = 1, 2, . . . ,

Eπ,γS
(z(W

〈1〉
k−1),t)

> 0.
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A conceptual emphasis

� NO “GLOBAL OPTIMALITY CRITERION” (A FUNCTIONAL) IS FORMULATED

Single-purposed objectives like “to find the policy which maximizes the expected total
discounted dividend pay-outs until the time of bankruptcy” may appear deficient to practical
people. That kind of objectives may impress some shareholders, let alone mathematicians,
but it will be resented by other parties to the insurance business.

C.-O. Segerdhal in his discussion of the paper [Borch,K. (1967)] expressed it by means of
a grotesque paradox:

“I should think that if a manager of an insurance company came to his board or
to his policyholders and said something like this: “Gentlemen, I am running this
company along lines proposed by modern economics. This means that the company
will certainly go broke. The probability of ruin is equal to one. It will go broke,
but I will try to postpone as long as possible the deplorable but inevitable moment
when you lose your money. Or, alternatively, before that happens, I will try to make
as much money as possible to distribute. I do not care what happens then”, I think
such a managing director would not need any deus ex machina to be relieved of
the burden of his duties. His board would see to that immediately.”


