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Abstract

In this paper intended to illustrate the adaptive control approach in insurance, a zone-
adaptive control strategy harmonizing the requirements of principles of solvency and equity is
considered in the simplistic framework of diffusion multiperiodic risk model. The adjacent works
by the author set the similar adaptive control strategies in more realistic Poisson-exponential
multiperiodic risk model. The room for further generalizations is large. In particular, it is the
risk theory insight into the problem of asset–liability and solvency adaptive management in
insurance under deficient information. The latter means that the intensities of the successive
annual claim arrival processes are the random variables which comply with a certain scenario.
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1. Introduction

It is generally accepted that the insurance system is a mechanism for reducing the adverse
financial impact of random events that prevent fulfillment of reasonable expectations. This
mechanism is fine-tuned by intensive calculations rooted in insurance ethics. The fundamental
principle is that insurers should charge a premium equal to the expected value of claim payments
and expenses, loaded with an amount necessary to provide adequate security for the insured,
rather than benefit those who seek unearned profit.

Insurance management requires great care and inventiveness rather than purely formal
calculations, and the merits of a skilled insurer bear analogy to those of a prudent ruler.
Relevance of the course toward synthesis of risk theory and control theory was recognized
by many scholars. In particular, K. Borch (see [3], p. 451) noticed that “general formulation
of the actuary’s problem leads directly to the general theory of optimal control processes or
adaptive control processes” and “the theory of control processes seems to be “tailor–made” for
the problems which actuaries have struggled to formulate for more than a century.”

Though optimal control, e.g., optimal pay-out of dividends, is a traditional set-up of actu-
arial mathematics (see, e.g., [2], [21]), single-purposed objectives like “to find the policy which
maximizes the expected total discounted dividend pay-outs until the time of bankruptcy” (see
[21], p. 105) may appear deficient to practical people. That kind of objectives may impress
some shareholders, let alone mathematicians, but it will be resented by other parties to the
insurance business.

Practical people tend to take the theory with a grain of salt, being concerned lest academics
entice them into taking a false step. C.-O. Segerdhal described this danger in his discussion of [3]
with this grotesque paradox: “I should think that if a manager of an insurance company came
to his board or to his policyholders and said something like this: “Gentlemen, I am running
this company along lines proposed by modern economics. This means that the company will
certainly go broke. The probability of ruin is equal to one. It will go broke, but I will try
to postpone as long as possible the deplorable but inevitable moment when you lose your
money. Or, alternatively, before that happens, I will try to make as much money as possible
to distribute. I do not care what happens then”, I think such a managing director would not
need any deus ex machina to be relieved of the burden of his duties. His board would see to
that immediately.”

On the contrary (cite again C.-O. Segerdhal [3]), “there is one life insurance company1 in
England which has been operating since 1762, so its management does not seem to have followed
these lines. I do not think they are very sorry about that, nor are, I think, its policyholders,
employees, or British life insurance as a whole.” Long-term steady business is the ultimate goal
of insurance management, and the theoretical implement to achieve it is adaptive control.

The present paper is an attempt of a theoretical insight into the asset–liability and solvency
adaptive management of the long-term insurance business. With this end in view, a multiperi-
odic model of risk with annual accounting and subsequent annual control interventions is set
forth. The emphasis is put on relevance of the adaptive control and on feasibility of its analytical
realization; in practice such problems are attacked mostly by means of simulation.

Concerning the balance of simulation and analytical methods, it is worthwhile to recall that
“the classical analytical methods and simulation should not be regarded as being in competition.
A general rule is that an analytical technique should always be used wherever it is tractable.
On the other hand, the temptation should be resisted to manipulate the premises of the model
in order to make the analytical calculations possible, if that can only be done at the cost
of the applicability of the model to real-world conditions. If that is done, as is often the

1This company is called Equitable Life; though it went into severe troubles a few years after the paper [3]
was published, it does not undermine the idea of C.-O. Segerdhal.
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case in theoretically-orientated risk theory, a warning of the restricted applicability — or non-
applicability — should be clearly given. The wide realm of application of simulation methods
begins at the frontier where other methods become intractable” (see [6], Chapter 1, Section 5.5,
p. 154).

Regarding the general multiperiodic model of risk, each trajectory may be diagrammed as

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · . (1)

According to this diagram (for k = 1, 2, . . . ), at the end of (k − 1)-th year the state variable
wk−1 is observed. It describes the insurer’s position at that moment. Then, at the beginning
of k-th year the control rule γk−1 is applied to choose the control variable uk−1. Thereupon the
k-th year probability mechanism of insurance unfolds; the transition function of this mechanism
is denoted by πk. It defines the insurer’s position at the end of the k-th year.

Paramount in (1) is the annual probability mechanism of insurance. It is modelled in [16]
and [17] by Lundberg’s collective risk model, while in this paper it is taken simplistic: the
annual risk reserve of an insurance company at time t is assumed to be

Rt(u, τ) = u + (1 + τ)µt− V (t), V (t) = µt + σWt, t > 0, (2)

where u is the initial risk reserve, Wt is a standard Brownian motion, µ is the premium rate
calculated according to the expected value principle (see e.g., [5], p. 85), i.e., EV (s) = µs, τ is
the adaptive premium loading, and σ > 0 is a constant diffusion coefficient, DV (s) = σ2s.

The recommendation of [6] to supplement the analysis of a model with a clear warning of its
restricted applicability is straightforward in that case. Observe that we consciously deal with
the simplistic annual mechanism (2) which allows elementary computations and transparent
mathematics. On the one hand, it is adequate when a telling illustration of the adaptive
control approach is sought. On the other hand, simplistic model suggests the lines along which
the analysis may be extended to a number of more realistic insurance risk models, where explicit
formulae are no more available.

It is also noteworthy that Brownian motion is common in risk theory for the following
reasons. On the one hand, application of diffusion models per se often provides insight into
complicated problems, otherwise intractable (see, e.g., [2], [21]). On the other hand, when
the jumping risk reserve may be duly replaced by an appropriate Brownian motion for which
the probabilities of interest may be computed exactly, very useful approximations are obtained
(see, e.g., [12], [10], [11], [19], [18], [8], with overview [1]). The path-wise convergence to
Brownian motion is justified, e.g., in the large-sample case, or for large frequency and small
severity (“heavy traffic” situation).

The paper is arranged as follows. Section 2 is devoted to synthesis of a zone-adaptive
strategy in diffusion risk model. Starting with definitions of the target value of the risk reserve
corresponding to a level 0 < α < 1, and of the basic adaptive strategy, it yields the diffusion
counterpart of the results of [15]—[17]. Section 3 discusses targeting, solvency and dynamic
solvency provisions of the zone-adaptive strategy and applies the concept of the general mul-
tiperiodic controlled risk model introduced in [14]. Section 4 touches upon some aspects of
further generalization of zone-adaptive strategies in the diffusion risk model. Section 5 contains
auxiliary results. The control-oriented reader may wish to start from Section 3.

2. Synthesis of a zone-adaptive strategy in diffusion risk model

Put Mt(u, τ) = inf0<s6t Rs(u, τ), Φ(x) = (1/
√

2π)
∫ x

−∞ e−y2/2dy the distribution function
of the standard normal distribution, and φ(x) its density.
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Definition 2.1. The target value uµ,σ(α, t) of the risk reserve corresponding to a level
0 < α < 1 is a positive solution of the equation

ψt(u; 0) = P{Mt(u, 0) < 0} = α. (3)

For 0 < α < 1, introduce cα = Φ−1(1− α/2).

Theorem 2.1. For 0 < α < 1, the solution of equation (3) in the diffusion model (2) may
be written as uµ,σ(α, t) = σ

√
t cα.

Proof. Note (see Theorem 5.1) that

ψt(u; 0) = P{Mt(u, 0) < 0} = P{ sup
0<s6t

Ws > u/σ} = 2P{Wt > u/σ}.

Evidently, 2P{Wt > u/σ} = 2
(
1 − Φ

( u

σ
√

t

))
. The equation 2

(
1 − Φ

( u

σ
√

t

))
= α has to be

solved for u. The solution is

u = σ
√

t cα, cα = Φ−1(1− α/2).

The proof is complete. ¤
Remark 2.1. The equation (3) may be called “neutral–loading” or “equitable–reserving”.

It defines the initial risk reserve sufficient to make the probability of ruin equal to α without
resort to premium loading, which may be voted fair by customers. In the diffusion model the
“probability of ruin” solvency criterion is as simple to deal with as a short-cut “ultimate risk
reserve” solvency criterion (see [6], p. 16–17): solution of the equation P{Rt(u, 0) < 0} = α
evidently is ûµ,σ(α, t) = σ

√
t ĉα, where ĉα = Φ−1(1− α).

Assuming that duration of the incoming year is t, we mean by z a deviation, either positive
or negative, of the past-year-end risk reserve from uµ,σ(α, t). Case z < 0 means deficit, case
z > 0 means surplus.

Definition 2.2. The strategy2

uz,t = uµ,σ(α, t) + z and τz,t = − z

µt
, z ∈ R, (4)

is called the basic adaptive strategy.

Remark 2.2. Applying the basic adaptive strategy (4), the risk reserve is

Rs(uz,t; τz,t) = uµ,σ(α, t) + z − z

t
s− σWs.

In particular, Rt(uz,t; τz,t) = uµ,σ(α, t)− σWt. Therefore

ERt(uz,t, τz,t) = uµ,σ(α, t) for any z ∈ R, (5)

and control (4) makes the capital at the time t (i.e., at the year-end of a single period) equal
“in the average” to the target value uµ,σ(α, t). That observation justifies the name of the target
capital value.

Theorem 2.2. For z ∈ (−σ
√

t cα,∞) and for the control strategy (4) in the diffusion model
(2), one has

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}

= 1− Φ(cα) + exp
{

2
z

σ
√

t

(
cα +

z

σ
√

t

)}
Φ

(
− 2

z

σ
√

t
− cα

)
. (6)

2Since the initial capital uz,t may not be negative, z > −uµ,σ(α, t) = −σ
√

t cα. Bear it in mind when put

z ∈ R for simplicity.
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Proof. Bearing in mind Theorem 2.1,

ψt(uz,t; τz,t) = P{ inf
0<s6t

((
1− s

t

)
z − σWs

)
< −uµ,σ(α, t)}

= P{ sup
0<s6t

(
σWs +

z

t
s
)

> σ
√

t cα + z}. (7)

Apply Theorem 5.2 which yields for z ∈ R

ψt(uz,t; τz,t) = P{ sup
0<s6t

(
σWs +

z

t
s
)

> σ
√

t cα + z}

= 1− Φ(cα) + exp
{

2
z

σ
√

t

(
cα +

z

σ
√

t

)}
Φ

(
− 2

z

σ
√

t
− cα

)
.

The proof is complete. ¤

Theorem 2.3. For z ∈ (−σ
√

t cα,∞) and for the control strategy (4) in the diffusion model
(2), the probability

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}
,

regarded as a function of z, is monotone decreasing, as z increases.

Proof. From the first equality (7), it is straightforward since 1− s
t > 0. For the alternative

proof, set F (x) = 1− Φ(cα) + exp{2x(cα + x)}Φ(−2x− cα), x ∈ R. One has

∂

∂z
ψt(uz,t; τz,t) =

1
σ
√

t

dF (x)
dx

∣∣∣
x= z

σ
√

t

.

Direct calculus yields

dF (x)
dx

= −2 exp{2x(cα + x)}φ(cα + 2x)
(
1− (cα + 2x)M(cα + 2x)

)
, (8)

where M(cα + 2x) =
1− Φ(cα + 2x)

φ(cα + 2x)
is the Mills ratio. Since for any v ∈ R

1− vM(v) = 1− vev2/2

∫ ∞

v

e−t2/2dt > 0,

which follows from v−1e−v2/2− ∫∞
v

e−t2/2dt = − ∫∞
v

e−t2/2d(t−1) =
∫ 1/v

0
e−1/2w2

dw, derivative
(8) is negative and the proof is complete. ¤

Definition 2.3. The lower alarm barrier of a zone with target value uµ,σ(α, t) and with
level β of probability of ruin, 0 < α < β < 1, is uµ,σ(α, β, t) = uµ,σ(α, t) + zµ,σ(α, β, t), where
zµ,σ(α, β, t) < 0 is a solution of the equation

ψt(uz,t; τz,t) = P
{
Mt(uz,t, τz,t) < 0

}
= β. (9)

Theorem 2.4. For 0 < α < 1, the solution of equation (9) in the diffusion model (2) may
be written as

zµ,σ(α, β, t) = −σ
√

t xα,β ,

where xα,β > 0 is a unique root of the equation

1− Φ(cα) + exp{−2x(cα − x)}Φ(2x− cα) = β. (10)

Proof of Theorem 2.4. It is evident from (6) and Theorem 2.3. ¤
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Table 2.1. Values of xα,β calculated numerically using (10).

β = 110α% β = 120α% β = 130α% β = 140α%

α = 0.1 cα = 1.645 xα,β = 0.7121 xα,β = 0.7522 xα,β = 0.7897 xα,β = 0.8249

α = 0.05 cα = 1.960 xα,β = 0.8360 xα,β = 0.8736 xα,β = 0.9090 xα,β = 0.9422

α = 0.01 cα = 2.576 xα,β = 1.0754 xα,β = 1.1098 xα,β = 1.1423 xα,β = 1.1730

Definition 2.4. Assume that 0 < α < β < 1. The strategy

a
uz,t =





uµ,σ(α, β, t), z < zµ,σ(α, β, t),

uµ,σ(α, t) + z, zµ,σ(α, β, t) 6 z 6 0,

uµ,σ(α, t), z > 0

(11)

and

a
τ z,t =





τµ,σ(α, β, t), z < zµ,σ(α, β, t),

− z

µt
, zµ,σ(α, β, t) 6 z 6 0,

0, z > 0,

(12)

where

τµ,σ(α, β, t) = −zµ,σ(α, β, t)
µt

,

is called zone-adaptive control strategy.

Remark 2.3. To keep the risk reserve into a zone3 associated with a target value, both
the initial capital and the premium loading control are applied. This idea may be found in
many sources. In particular, in [6], Chapter 5, Section 5.5, p. 151, a control is proposed where
premium loading “will be increased if the risk reserve ratio passes below a certain alarm barrier.
On the other hand, if another barrier is exceeded, the loading will be reduced.”

Theorem 2.5. For 0 < α < β < 1, the zone-adaptive control strategy in the diffusion model
is

a
uz,t =





σ
√

t (cα − xα,β), z < −σ
√

t xα,β ,

σ
√

t cα + z, −σ
√

t xα,β 6 z 6 0,

σ
√

t cα, z > 0

(13)

and

a
τ z,t =





σ

µ
√

t
xα,β , z < −σ

√
t xα,β ,

− z

µt
, −σ

√
t xα,β 6 z 6 0,

0, z > 0.

(14)

Definition 2.5. For the strategy (11)–(12), the random variable

Sz,t =





0, uµ,σ(α, β, t) 6 Rt(
a
uz,t,

a
τ z,t) 6 uµ,σ(α, t),

Rt(
a
uz,t,

a
τ z,t)− uµ,σ(α, t), Rt(

a
uz,t,

a
τ z,t) > uµ,σ(α, t),

−(uµ,σ(α, β, t)−Rt(
a
uz,t,

a
τ z,t)), Rt(

a
uz,t,

a
τ z,t) < uµ,σ(α, β, t)

3In particular, it is an objective of a rule in Directives [7].
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is called annual excess (of either sign) of capital.

3. Adaptive strategy in multiperiodic model of risk

Address first the multiperiodic diffusion risk model and discuss performance of the zone-
adaptive strategy (13)–(14). Recall (see [14]) that rigorous definition of a general multiperiodic
controlled risk model over the elementary state space (Ω,F) with realizations matching the
diagram (1) amounts to a random sequence (Wk, Uk), k = 0, 1, . . . , called controlled random
sequence, as follows.

Let the random variables Wk, k = 0, 1, . . . , with realizations wk assume values in a state
space W endowed with a σ-algebra W, called k-th year output state space. The random variables
Uk, k = 0, 1, . . . , with realization uk assume values in a state space U endowed with a σ-algebra
U, called k-th year input or control state space. Particular choice of the spaces (W, W) and
(U, U) will depend on the context.

For brevity, set Y0 = {w0} and for k = 2, 3, . . . put

Yk−1 = {w0, . . . , wk−1; u0, . . . , uk−2}
for the “history” up to the (k − 1)-th year inclusively. Introduce

πk(Yk−1, uk−1 ; dwk) = πk(w0, . . . , wk−1, u0, . . . , uk−1 ; dwk),

γk−1(Yk−1 ; duk−1) = γk−1(w0, . . . , wk−1, u0, . . . , uk−2 ; duk−1)

called transition function of the probability mechanism (t.f.p.m.) of insurance and transition
functions of control mechanism (t.f.c.m.) respectively.

The k-th year t.f.p.m. is any kernel on (W×[W×k×U×k],W⊗[W⊗k⊗ U⊗k]), i.e., a measure
on (W, W) with respect to its last argument, and a measurable function on W⊗k ⊗ U⊗k with
respect to w0, . . . , wk−1, u0, . . . , uk−1. The k-th year t.f.c.m. is a measure on (U,U) with respect
to its last argument, and a measurable function on W⊗k⊗ U⊗k−1 with respect to w0, . . . , wk−1,
u0, . . . , uk−2. Sequences of t.f.c.m.

γ = {γk(· ; ·), k = 0, 1, . . . } or γn = {γk(· ; ·), k = 0, 1, . . . , n− 1}
are called infinite- or finite-time (n-years) planning horizon control strategies. It is noteworthy
that practical insurers are interested in control strategies with quite a limited number of years,
rather than in large- or even infinite-time ones.

It is known (see, e.g., § 1 of Chapter 1 in [9]) that under certain mild regularity conditions on
the measurable spaces (W, W) and (U,U) the initial distribution π0(·) and the families πk(· ; ·),
k = 1, 2, . . . , and γk(· ; ·), k = 0, 1, . . . , define over the elementary state space (Ω,F) a random
sequence (Wk, Uk), k = 0, 1, . . . , having finite-dimensional distributions

Pπ,γ{W0 ∈ A0, U0 ∈ B0, . . . ,Wn ∈ An, Un ∈ Bn} =
∫

A0

π0(dw0)

×
∫

B0

γ0(w0 ; du0) . . .

∫

An

πn(Yn−1, un−1 ; dwn)
∫

Bn

γn(Yn ; dun), (15)

where n ∈ N and Ak ∈ W, Bk ∈ U, k = 0, 1, . . . , n. In other words, these families specify a
unique measure Pπ,γ on (Ω, F) which value on any rectangle A0 × · · · × An × B0 × · · · × Bn is
given by the right hand side of (15).

In such a way, controlled random sequence is the random sequence (Wk, Uk), k = 0, 1, . . . ,
on (Ω, F,Pπ,γ) assuming values on the product space (W×U, W⊗U). It defines the multiperiodic
controlled insurance process.

In the control theory the k-th annual probability mechanism is called Markov if t.f.p.m. is
of the form

πk(Yk−1, uk−1 ; dwk) = πk(wk−1, uk−1 ; dwk),
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being a function of the previous state and action only. The k-th year control is called non-
randomized or pure if t.f.c.m. is degenerate,

γk−1(Yk−1 ; duk−1) = δγk−1(Yk−1)(duk−1).

In other words, one has
uk−1 = γk−1(Yk−1), (16)

where γk−1(·) is a mapping from W×k × U×(k−1) to U. The strategies γ or γn are called
non-randomized or pure if each t.f.c.m. γk is non-randomized.

In stochastic control theory the non-randomized strategies are emphasized because of their
mathematical convenience and “sufficiency” (see, e.g., Theorem 1.2 in [9]). In this paper they
are accentuated because of their pragmatic advantage: supervisors will hardly approve appli-
cation of a randomized control strategy.

The k-th year non-randomized control is called Markov if

uk−1 = γk−1(wk−1). (17)

Pure strategies γ or γn are called Markov if each t.f.c.m. γk is Markov. The decision maker
who applies a Markov strategy deals with the immediate history ignoring the more ancient one.

Remark 3.1. If we deal with Markov t.f.p.m. and restrict ourselves to pure Markov
strategies, then the controlled random sequence (Wk, Uk), k = 0, 1, . . . , is reduced to a Markov
chain with transition probability

P (wk−1 ; dwk) = πk(wk−1, γk−1(wk−1); dwk).

We continue to write Pπ,γ for the Markov chain with transition probability P and denote by
Eπ,γ the mean with respect to that measure.

Come back to diffusion multiperiodic controlled risk model and to the adaptive strategies
synthesized in Section 2. For the mutually independent standard Brownian motions W

[k]
t ,

k = 1, 2, . . . , select
W = R× {0, 1} and U = R+ × R+

and set w〈1〉
0 = u > 0, wk = (w〈1〉

k , w〈2〉
k ) ∈ W, uk−1 = (u〈1〉k−1, u

〈2〉
k−1) ∈ U and dwk = (dw〈1〉

k ×
dw〈2〉

k ) ∈ W. For simplicity’s sake consider in this section the stationary case, which means that
µ, σ, t, α and β are year-by-year equal.

For k = 1, 2, . . . , let the k-th annual t.f.p.m. be

πk(wk−1, uk−1 ; dwk) = P{Rt(uk−1) ∈ dw〈1〉
k , 1{Mk(uk−1)<0} ∈ dw〈2〉

k }, (18)

where, in accordance with (2),

Rt(uk−1) = u〈1〉k−1 + (1 + u〈2〉k−1)µt− Vk(t), Vk(t) = µt + σW
[k]
t , t > 0.

For k = 1, 2, . . . , let the k-th annual t.f.c.m. be uk−1 = γk−1(wk−1), where

γk−1(wk−1) = (γ〈1〉k−1(wk−1), γ
〈2〉
k−1(wk−1))

with z(w〈1〉
k−1) = w〈1〉

k−1 − σ
√

tcα and (see (13) and (14))

γ〈1〉k−1(wk−1) =
a
u

z(w
〈1〉
k−1),t

and γ〈2〉k−1(wk−1) =
a
τ

z(w
〈1〉
k−1),t

. (19)

Evidently, t.f.p.m. (18) is Markov and the n-year strategy γn = {γk(· ; ·), k = 0, 1, . . . , n−1}
generated by (19) is pure and Markov. The diffusion multiperiodic controlled risk model is
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reduced (see Remark 3.1) to a Markov chain on the state space (W,W), W = R× {0, 1}, with
the transition probability4

P (wk−1 ; dwk) = P
{
Rt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

) ∈ dw〈1〉
k , 1{

Mt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

)
<0

} ∈ dw〈2〉
k

}
.

Bearing in mind Theorem 5.3, this transition probability may be further elaborated as
follows: the “ruin” kernel (recall that z(w〈1〉

k−1) = w〈1〉
k−1 − σ

√
tcα)

P (wk−1 ; dw〈1〉
k ×{1}) = P

{
Rt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

) ∈ dw〈1〉
k ,Mt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

)
< 0

}

is equal5 to

P{σ
√

tcα − σWt ∈ dw〈1〉
k , sup

0<s6t

(
σWs +

z(w〈1〉
k−1)
t

s
)

> σ
√

t cα + z(w〈1〉
k−1)} (20)

if −σ
√

t xα,β 6 z(w〈1〉
k−1) 6 0, is equal to

P{σ
√

tcα − σWt ∈ dw〈1〉
k , sup

0<s6t

(
σWs − σxα,β√

t
s
)

> σ
√

t (cα − xα,β)} (21)

if z(w〈1〉
k−1) < −σ

√
t xα,β , and is equal to

P{σ
√

tcα − σWt ∈ dw〈1〉
k , sup

0<s6t
σWs > σ

√
t cα} (22)

if z(w〈1〉
k−1) > 0. The analysis of “non-ruin” kernel

P (wk−1 ; dw〈1〉
k × {0})

= P
{
Rt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

) ∈ dw〈1〉
k ,Mt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

)
> 0

}
(23)

is analogous.

Remark 3.2. Emphasize again our reason to work with the diffusion annual probability
mechanisms of insurance (2). Seeking for a telling illustration of the adaptive control approach,
we came from a general multiperiodic model to a particular one which allows, due to the well-
known auxiliary Theorem 5.3, the explicit expressions for (20), (21), (22) and for (23). If the
explicit formulae are not of paramount interest, e.g., for the computer-oriented analysts, the
extensions to more general annual probability mechanisms of insurance may be straightforward.

We have defined diffusion multiperiodic controlled risk model with n-years zone-adaptive
strategy (19). Let us analyze its performance.

3.1. Targeting. Targeting, or ability to keep the risk reserve inside a strip zone associated
with the target value uµ,σ(α, t), is the central property of zone-adaptive strategies.

Theorem 3.1. In the above multiperiodic diffusion stationary risk model, for the strategy
(19) and for each k = 1, 2, . . . ,

Eπ,γ{capital at the end of year k} = σ
√

t cα.

4It is noteworthy that P (wk−1 ; dwk) depends on wk−1 through w
〈1〉
k−1 only.

5It is noteworthy that P (wk−1;R× {1}) = ψt(
a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

).
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Proof. Bearing in mind Theorem 2.1, one has (see Remark 2.2, recall that Vk(t) = µt +
σW

[k]
t and see (19), (11) and (12) for definition of U 〈1〉

k−1 and U 〈2〉
k−1)

W 〈1〉
k = Rt(Uk−1) = U 〈1〉

k−1 + (1 + U 〈2〉
k−1)µt− Vk(t) = σ

√
t cα − σW

[k]
t .

The proof is complete by taking expectation from both sides. ¤

3.2. Solvency. The following result is fundamental.

Theorem 3.2. In the above multiperiodic diffusion stationary risk model, for the strategy
(19) and for each k = 1, 2, . . . ,

Pπ,γ{first ruin in year k} 6 β.

Proof. One has6

Pπ,γ{first ruin in year k} = Pπ,γ{W 〈2〉
1 = 0, . . . , W 〈2〉

k−1 = 0, W 〈2〉
k = 1}

=
∫

R+×{0}
P (w0, dw1) . . .

∫

R+×{0}
P (wk−2, dwk−1)P (wk−1,R× {1}),

where
P (wk−1, R× {1}) = ψt(

a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

) 6 β

by Section 2. It yields the result immediately. ¤

Corollary 3.1. For each integer n,

Pπ,γ{ruin within n years} =
n∑

k=1

Pπ,γ{first ruin in year k} 6 nβ.

3.3. Dynamic solvency provisions. To redirect, as in (19), the risk reserve into the strip
zone when deficit at the end of the insurance year occurs, provisions have to be established.
These provisions should be backed by appropriate assets, which are formed by surplus values
reserved in those years when the year-end risk reserve exceeds the upper level of the strip zone.
Commonly, these provisions are invested, but we consciously ignore the investment aspects
in this paper. The interested reader may introduce them at the price of more cumbersome
transition probabilities.

Bearing in mind Definition 2.5, consider

Eπ,γSn =
n∑

k=1

Eπ,γS
(z(W

〈1〉
k−1),t)

,

where

Eπ,γS
(z(W

〈1〉
k−1),t)

=
∫

W

P (w0, dw1) . . .

∫

W

P (wk−2, dwk−1)

×
( ∫

{w〈1〉k >σ
√

t cα}
(w〈1〉

k − σ
√

t cα)P (wk−1, dw〈1〉
k × {0, 1})

−
∫

{w〈1〉k <σ
√

t (cα−xα,β)}
(σ
√

t (cα − xα,β)−w〈1〉
k )P (wk−1, dw〈1〉

k × {0, 1})
)
.

The following theorem shows that application of the strategy (19) implicates the increase
(in terms of mean values) of dynamic solvency provisions.

6Note that w
〈2〉
k = 0 implies w

〈1〉
k > 0, k = 1, 2, . . . .
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Theorem 3.3. In the above multiperiodic diffusion stationary risk model, for the strategy
(19) and for each k = 1, 2, . . . ,

Eπ,γS
(z(W

〈1〉
k−1),t)

> 0.

Proof. Note that

P (wk−1 ; dw〈1〉
k × {0, 1}) = P

{
Rt

(a
u

z(w
〈1〉
k−1),t

,
a
τ

z(w
〈1〉
k−1),t

) ∈ dw〈1〉
k

}
,

which equals P{σ√tcα−σWt ∈ dw〈1〉
k } = Φ{σ√tcα,σ2t}(dw〈1〉

k ) for each w〈1〉
k−1 (see (20), (21), (22)

and their analogues in case on “non-ruin” kernel). Here Φ{σ√tcα,σ2t}(·) stands for the normal
distribution function with expectation σ

√
tcα and variance σ2t. It is easy to verify that

∫

{x>σ
√

t cα}
(x− σ

√
t cα)Φ{σ√tcα,σ2t}(dx)

−
∫

{x<σ
√

t (cα−xα,β)}
(σ
√

t (cα − xα,β)− x)Φ{σ√tcα,σ2t}(dx) > 0,

which completes the proof. ¤

4. Some generalizations and discussion

In Section 3 we dealt with Markov t.f.p.m. and pure Markov control strategy, which yields
relatively compact formulae. Moreover, we dealt with the stationary case, when duration t, the
parameters of the annual risks µ, σ and the parameters of the strategy α, β are year-by-year
equal. Generalizations of this framework are numerous.

4.1. Non-stationary case. Generalization to the series of annual risks which remain
known but different throughout successive insurance years is straightforward: endow t, µ, σ,
α, β in Section 3 with subscripts indicating the number of year, i.e., tk, µk, σk, αk, βk. The
arguments in the proofs remain essentially the same.

4.2. Refined control. There could be proposed many refined control strategies backed
by insurance practice. A straightforward example of refined control is adaptive selection of the
control parameters α, β feed-backed on the past history. One has

W = R× {0, 1} and U = R+ × R+ × (0, 1)× (0, 1),

with t.f.p.m. (18) and the control strategy defined (compare to (19)) by the quadruple

γ〈1〉k−1(wk−1) =
a
u

z(w
〈1〉
k−1),t

, γ〈2〉k−1(wk−1) =
a
τ

z(w
〈1〉
k−1),t

,

γ〈3〉k−1(wk−1) = α(wk−1), γ〈4〉k−1(wk−1) = β(wk−1),

with α = α(wk−1), β = β(wk−1) in γ〈1〉k−1(wk−1) and γ〈2〉k−1(wk−1). A sensible choice of the
functions α : W → (0, 1) and β : W → (0, 1) must, e.g., return “tougher” control values, as
w〈2〉

k−1 = 1 (i.e., when ruin occurs in the previous year).
Another example addresses solvency control levels which are early warning levels with

regard to the ruin (see [20] where solvency control levels are discussed from the positions of
regulation). Introduce m control levels 0 < %1 < · · · < %m. Set t.f.p.m. (compare to (18))

πk(wk−1, uk−1 ; dwk) = P{Rt(uk−1) ∈ dw〈1〉
k , 1{Mk(uk−1)<0} ∈ dw〈2〉

k ,

1{Mk(uk−1)<%1} ∈ dw〈3〉
k , . . . , 1{Mk(uk−1)<%m} ∈ dw〈m+2〉

k } (24)

and put W = R×{0, 1}×· · ·×{0, 1} with wk = (w〈1〉
k , w〈2〉

k , . . . , w〈m+2〉
k ) ∈ W. A sensible control

should impose gradually tougher restrictions after downward crossings of the control levels.
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4.3. Non-Markov modelling. A kind of non-Markov control is mentioned, e.g., in Di-
rectives [7], where three- and seven-years feedback is applied. For such control, of which the
simplest case is the two-year feedback

uk−1 = γk−1(wk−2,wk−1),

non-Markov generalizations of t.f.p.m. (18) may be applied, e.g.,

πk(wk−2, wk−1, uk−1 ; dwk) =

{
π[1]

k (wk−1, uk−1 ; dwk), w〈2〉
k−2 = 0,

π[2]

k (wk−1, uk−1 ; dwk), w〈2〉
k−2 = 1,

where π[1]

k is a “standard” t.f.p.m. (i.e., t.f.p.m. (18)) applied when in year k − 2 there is no
ruin, and π[2]

k is a t.f.p.m. (for example, (24)) designed for a more cautious control after a ruin
in year k − 2.

4.4. Diffusion approximations. The Brownian model is of particular attention because
of its role in diffusion approximation, when the random walk is replaced by an appropriate
Brownian motion process for which the probabilities of interest are explicit. In our context
the standard conditions (see [12], [10], [11], [19], [18], [8]) may be applied to approximate
the explicit transition probabilities found in Section 3 and the lower and upper bounds of the
zone-adaptive strategy found in Section 2. This analysis, though strategically clear, requires
many technicalities and will be done elsewhere.

4.5. Stress testing and scenario analysis. Recall that scenario analysis typically refers
to varying a range of parameters in the model of multiperiodic insurance process according
to some scenario of nature, and stress testing refers to such shifting the values of individual
parameters that affects critically the insurer’s financial position. Both are made to evaluate the
impact of these effects on the insurer’s business.

Important is to examine the multi-periodic diffusion risk models with incompletely known
underlying risk. The risk structure may be specified by a set of particular scenarios of nature.
For example, a volatile nature scenario is formed by assuming the successive annual claims
out-pay rates i.i.d. outcomes of a random variable, always unknown at the moment of decision
making. The adaptive control strategies introduced in the paper under complete information
may be developed to compensate the inevitable errors of decision making under incomplete
information.

5. Auxiliary results for Brownian motion

For the reader’s convenience we collect in this section some formulae for real-valued Brow-
nian motion with linear drift, θt + σWt, t > 0, where θ ∈ R, σ > 0.

Theorem 5.1. For x > 0

P{ sup
06s6t

Ws > x} = 2P{Wt > x}.

This result is well known. Refer to formula 1.1.4 in Part II, Chapter 1 of [4].

Theorem 5.2. For x > 0 and θ ∈ R, σ > 0

P{ sup
06s6t

(θs + σWs) 6 x} = Φ
(x− θt

σ
√

t

)
− exp{2θx/σ2}Φ

(−x− θt

σ
√

t

)
.

This result is well known (see, e.g., [13], Example 1 on p. 27). Refer to formula 1.1.4 in
Part II, Chapter 2 of [4].
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Theorem 5.3. For x > 0 and θ ∈ R, σ > 0

P{θt + σWt ∈ dy, sup
06s6t

(θs + σWs) 6 x} = P{θt + σWt ∈ dy}

− P{θt + σWt ∈ dy, sup
06s6t

(θs + σWs) > x},

where
P{θt + σWt ∈ dy} =

1
σ
√

2πt
exp{−(y − θt)2/2σ2t} dy

and

P{θt + σWt ∈ dy, sup
06s6t

(θs + σWs) > x}

=
1

σ
√

2πt
exp{(2θyt− θ2t2 − (|y − x|+ x)2)/2σ2t} dy.

This result is well known. Refer to formulae 1.0.6 and 1.1.8 in Part II, Chapter 2 of [4].
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