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Bearing further in mind that ' (k+ ) = v/2m (k+ )% e ™%~ V2(1 +5(1)), k! = v2mk kke*
x (1 + (1)), so that I'(k + $)/k! = k~1/2(1 +5(1)), and that £ (k + 1) — 1, as k — o0, we
easily obtain the relation (6.2) for / = 1. It is worth noting that 1"(%) = /7 and "k + %) =
VAt k=D&~ k=1,2,....

To obtain (6.2) for [ = 3, note that termwise differentiation is allowed (see Whittaker and
Watson (1963), Chap. II, Section 2.61) and obtain for sufficiently small a

o o man _ T \F“F<k+%>c<k+%> k-1
;ﬁe =232 E; Qokk—1

Further termwise differentiation of (6.3) completes the proof.

Lemma 6.8. The inequality (a + b)? < 2P~1(aP + bP) holds true fora, b > Oand p > 1.

Proof of Lemma 6.8. Put f(x) = (a+x)? —2P~Y(a? +xP). Since f'(x) = pla+x)?~1 —
2P tpxP~land p > 1, f'(a) =0, f'(x) > 0,as x < a, and f'(x) < 0, as x > a. Therefore
f () < max, f(x) = f(a) = 0 and the proof is complete.
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