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1. Introduction: a deficiency of traditional Risk Theory
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• Quotation from H.Bohman’ (p. 2) farewell interview as retiring Chief Editor of the
Scandinavian Actuarial Journal:

“I was for a long time deeply involved in this theory, working on the probability of ruin,
but I am hesitant over it now . . . From a practical point of view, the theory of collective
risk, as initiated by Filip Lundberg, has missed the point, because the underlying model is
unrealistic, too simplified. For one thing, a stationary business should give stationary reserves,
as predicted by the control theory.”

• Quotation from H.Cramér:

“In view of certain misconceptions that have appeared it is, however, necessary to point out
that Lundberg repeatedly emphasizes the practical importance of some arrangement which
automatically prevents the risk reserve from growing unduly. This point is, in fact, extensively
discussed in the papers of 1909, 1919 and 1926 – 28. One possible arrangement proposed to
this end is to work with a security factor τ = τ (x) which is a decreasing function of the risk
reserve R(t) = x. Another possibility is to dispose, at predetermined epochs, of part of the
risk reserve for bonus distribution. By either method, the growth of the risk reserve may be
efficiently controlled. What Lundberg does in this connection is really to work with a rather
refined case of what has much later come to be known as a random walk with two barriers.



From certain quarters, the Lundberg’s theory has been declared to be unrealistic because,
it is asserted, no limit is imposed on the growth of the risk reserve. In view of what has been
said above, it would seem that these critics have not read the author they are criticizing. For
a non-Scandinavian author there is, of course, the excuse that most of Lundberg’s works are
written in Swedish.”

• Quotation from C. Philipson (p. 68):

“From the development of the classical form [of the risk theory. — V.M.] two lines of
development have branched out, one refers to the generalization of the fundamental as-
sumptions . . . The other refers to the extensions of the decision theory . . . These lines of
development are, however, all based on the fundamental conception of the collective risk
theory, which was created by Filip Lundberg . . . ”

• Quotation from K.Borch (p. 451):

“We have now reached the point where the actuarial theory of risk again joins the mainstream
of theoretical statistics and applied mathematics. Our general formulation of the actuary’s
problem leads directly to the general theory of optimal control processes or adaptive control
processes . . .

The theory of control processes seems to be “tailor–made” for the problems which actuaries
have struggled to formulate for more than a century.”
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• Quotation from C.D.Daykin, T. Pentikäinen, M. Pesonen (Chapter 1, Section 5.5,
p. 154):

“It is worth mentioning that the classical analytical methods and simulation should not be
regarded as being in competition. A general rule is that an analytical technique should always
be used wherever it is tractable. On the other hand, the temptation should be resisted to
manipulate the premises of the model in order to make the analytical calculations possible, if
that can only be done at the cost of the applicability of the model to real–world conditions.
If that is done, as is often the case in theoretically–orientated risk theory, a warning of the
restricted applicability — or non–applicability — should be clearly given. The wide realm
of application of simulation methods begins at the frontier where other methods become
intractable.”
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2. Managing solvency: simulation analysis of insurance
risk process, scenario-based DFA, directives
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3. Modelling of multiperiodic controlled insurance
process
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Multiperiodic controlled insurance process

General multiperiodic insurance process with annual accounting,
built-in information system and annual control interventions

(
w0

s0

)
γ0−→ u0

π1−→
(

w1

s1

)
︸ ︷︷ ︸

1-st year

· · · πk−1−→
(

wk−1

sk−1

)
γk−1−→ uk−1

πk−→
(

wk

sk

)
︸ ︷︷ ︸

k-th year

· · · .

Singleperiodic (annual generic) risk models

• Diffusion
• Poisson–Exponential (classical)

Scenarios of Nature (Completely Known Nature Scenario, Stable Nature
Scenario, Fluctuating Nature Scenario, etc.)
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Singleperiodic (annual generic) Poisson–Exponential risk model

Poisson–Exponential (or classical) risk model: the risk reserve at time t is

Rs(u, c, τ ) = u + c(1 + τ )s− Vs, Vs =

N(s)∑
i=1

Yi, 0 � s � t,

where u is the initial risk reserve, c is the risk premium rate, τ is the adaptive premium
loading, t is the year duration, {Ti}i�1 and {Yi}i�1 are i.i.d. and mutually independent,
where Ti are the interclaim times and Yi are the amounts of claims, exponentially distributed
with parameters λ > 0 and µ > 0, respectively, N(t) is the largest n for which

∑n
i=1 Ti � t

(we put N(t) = 0 if T1 > t). Put Mt(u, c, τ ) = inf0<s�t Rs(u, c, τ ).
Note that

EVs =
λ

µ
s, s � 0,

so the premium rate c =
λ

µ
(when λ and µ are known) is calculated according to the Equity

(Expected value) Principle.
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Singleperiodic (annual generic) diffusion risk model

Diffusion risk model:

Rs(u, c, τ ) = u + c(1 + τ )s− Vs, Vs = µs+ σWs, 0 � s � t,

where u is the initial risk reserve, c is the risk premium rate, τ is the adaptive premium
loading, t is the year duration, Vs, 0 � s � t, is the claims out-pay process with claims
out-pay rate µ, diffusion coefficient σ > 0 and standard Brownian motion Ws, 0 � s � t.
Put

Mt(u, c, τ ) = inf
0<s�t

Rs(u, c, τ ).

The couple (Rt,Mt) is taken generic for the state variable which describes insurer’s annual
financial experience.

The triplet (u, c, τ ) generates three-dimensional control variable.
Rigorous definition of a model and synthesis of the adaptive control rules satisfying desirable

performance criteria is the central problem. It is tightly connected with the Scenarios of
Nature.
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Scenarios of Nature (for diffusion generic risk models)

Completely Known Nature Scenario
For k = 1, 2, . . . , all claims out-pay rate parameters µk > 0 and diffusion parameters

σk > 0 of the annual claims out-pay processes V
[k]
s , 0 � s � t, are known in advance.

Stable Nature Scenario
For k = 1, 2, . . . , claims out-pay rate parameters µk > 0 and diffusion parameters σk > 0

remain unchanged for years, µ1 = µ2 = · · · = µ and σ2
1 = σ2

2 = · · · = σ2 (to be specific,
assume that µ ∈ M = [a, b] ⊂ R+), σ2 is known but µ is unknown.

Fluctuating Nature Scenario
The claims out-pay rate parameters µk, k = 1, 2, . . . , are i.i.d. Normal random variables

with known mean µ and variance st > 0, and independent on the insurance process. The
diffusion parameters σk, k = 1, 2, . . . , are known positive numbers.
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Transition functions πk in multiperiodic controlled risk model
(for diffusion generic risk models and Stable Nature Scenario)

The background data is a series (k = 1, 2, . . . ) of mutually independent standard Brownian

motions W
[k]
s , 0 � s � t. Put

W = R × {0, 1}, M = [a, b], U = R+ × R+ × R

and specify t.f.p.m. πk, k = 1, 2, . . . . For k = 1, 2, . . . introduce V
[k]
s = µs + σW

[k]
s ,

0 � s � t, set uk−1 = (u〈1〉
k−1, u

〈2〉
k−1, u

〈3〉
k−1) ∈ U and consider

R[k]
s (uk−1) = u

〈1〉
k−1 + u

〈2〉
k−1(1 + u

〈3〉
k−1)s− V [k]

s ,

M
[k]
t (uk−1) = inf

0<s�t
R[k]
s (uk−1),

µ̂
[k]
t = t−1V

[k]
t = µ + σt−1W

[k]
t (Maximum likelihood estimate, MLE).

For k = 1, 2, . . . set wk = (w〈1〉
k ,w

〈2〉
k ) ∈ W, sk ∈ M and introduce t.f.p.m.

πk(wk−1, sk−1, uk−1 ; dwk × dsk)

= Pµ{R[k]
t (uk−1) ∈ dw〈1〉

k , 1{M [k]
t (uk−1)<0} ∈ dw〈2〉

k , µ̂
[k]
t ∈ dsk} for µ ∈ M.
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Control strategies in multiperiodic controlled risk model
Set dε = Φ−1

{0,1}(1 − ε) � 0 for 0 < ε � 1/2 (d1/2 = 0) and note that for

υ̂
[k]
t,ε = µ̂

[k]
t + σt−1/2dε,

Pµ{µ < υ̂
[k]
t,ε} = 1 − ε for all µ ∈ [a, b].

Say for 0 < ε < 1/2 that µ is overestimated by υ̂
[k]
t,ε, or ε-overestimated.

• A Markov strategy: γk−1(·) : W × M → U, k = 1, 2, . . .

For 0 < α < 1, 0 < ε � 1/2, the initial control (u〈1〉
0 , u

〈2〉
0 , u

〈3〉
0 ) and the sequence

(u〈1〉
k , u

〈2〉
k , u

〈3〉
k ), k = 1, 2, . . . , where

u
〈1〉
k = w

〈1〉
k , u

〈2〉
k = sk + σt−1/2dε, u

〈3〉
k = − z

t(sk + σt−1/2dε)

with z = w
〈1〉
k − udε(α, t, 1), deviation of the past-year-end risk reserve (i.e., a financial result

of the previous year) from u0(α, t, 1), is called Markov basic adaptive control strategy with
ε-overestimated µ. When ε = 1/2 (which implies dε = 0), it is called Markov basic adaptive
control strategy with estimated µ.
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• A zone-adaptive non-Markov strategy: γk−1(·) : (W × M)k → U, k = 1, 2, . . .

For 0 < α � β < 1, 0 < ε � 1/2, the initial control (u〈1〉
0 , u

〈2〉
0 , u

〈3〉
0 ) and the sequence

(u〈1〉
k , u

〈2〉
k , u

〈3〉
k ), k = 1, 2, . . . , where

u
〈1〉
k =



ulow
t,k (α, β, ε), z < zlow

t,k (α, β, ε),

w
〈1〉
k , zlow

t,k (α, β, ε) � z � 0,

udε(α, t, k), z > 0,

u
〈2〉
k = Sk,

u
〈3〉
k =



τ low
t,k (α, β, ε), z < zlow

t,k (α, β, ε),

− z

tSk
, zlow

t (α, β, ε) � z � 0,

0, z > 0

with z = w
〈1〉
k − udε(α, t, k), Sk = k−1

∑k
i=1 si + σ(tk)−1/2dε, is called non-Markov zone-

adaptive control strategy with ε-overestimated µ. In the particular case ε = 1/2 (which
implies dε = 0) it is called non-Markov zone-adaptive control strategy with estimated µ.
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Rigorous mathematical model
By multiperiodic controlled insurance process with built-in information system we mean

the controlled random sequence

(Wk, Sk, Uk), k = 0, 1, . . . ,

defined over the probability space (Ω,F,Pπ,γ
µ ) with µ ∈ M. The random variables (Wk, Sk),

k = 0, 1, . . . , with realizations (wk, sk) assume values in the output space (W×M,W⊗M)
which is a product of the financial experience state space and statistical information state
space, the random variables Uk, k = 0, 1, . . . , with realizations uk assume values in the input,
or control state space (U,U).

For each µ ∈ M, the measure Pπ,γ
µ is defined over the elementary state space (Ω,F) as a

unique probability measure such that for every rectangle A0 × · · · × An × B0 × · · · ×Bn−1

Pπ,γ
µ {(W0, S0) ∈ A0, U0 ∈ B0, . . . , Un−1 ∈ Bn−1, (Wn, Sn) ∈ An}

=

∫
A0

π0(dw0 × ds0)

∫
B0

γ0((w0, s0); du0)

∫
A1

π1(Y0, u0 ; dw1 × ds1) . . .

. . .

∫
Bn−1

γn−1(Yn−1 ; dun−1)

∫
An

πn(Yn−1, un−1 ; dwn × dsn),

where n ∈ N, Ak ∈ W ⊗ M, Bk ∈ U, k = 0, 1, . . . , Y0 = {w0, s0} and

Yk−1 = {(w0, s0), . . . , (wk−1, sk−1), u0, . . . , uk−2}.
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4. Synthesis of adaptive control rules in generic models

Diffusion risk model:

Rs(u, c, τ ) = u + c(1 + τ )s− Vs, Vs = µs+ σWs, 0 � s � t,

where u is the initial risk reserve, c is the risk premium rate, τ is the adaptive premium
loading, t is the year duration, Vs, 0 � s � t, is the claims out-pay process with claims
out-pay rate µ, diffusion coefficient σ > 0 and standard Brownian motion Ws, 0 � s � t.
Put

Mt(u, c, τ ) = inf
0<s�t

Rs(u, c, τ ).

Assumption 1. For every integer k, there exists a Normal random variable µ̂tk indepen-
dent on Brownian motion Ws, 0 � s � t, such that Eµµ̂tk = µ and Dµµ̂tk = σ2(tk)−1 for
all µ ∈ M = [a, b].

Definition 1. For k integer, 0 < α < 1, the target capital value udε(α, t, k) correspond-
ing to the random risk premium rate υ̂tk,ε = µ̂tk + σ(tk)−1/2dε is a positive solution of the
equation

Pµ{Mt(u, υ̂tk,ε, 0) < 0} = α.



SA International Insurance Conference 31st January – 2nd February 2007

Panel XIII: Managing solvency — a risk theory insight

Theorem 1. For k integer, 0 < α < 1, 0 < ε � 1/2 and dε = Φ−1
{0,1}(1−ε), the solution

of equation
Pµ{Mt(u, υ̂tk,ε, 0) < 0} = α,

where υ̂tk,ε = µ̂tk + σ(tk)−1/2dε, is

udε(α, t, k) = σ
√
t yk,

and yk is a positive solution of the equation

Φ{0,1}
(
− y

√
k + dε√
k + 1

)
+ exp

{ − 2y
( dε√

k
− y

k

)}
Φ{0,1}

(
− y(k + 2) − dε

√
k√

k(k + 1)

)
= α.

Table 1. Values of udε(α, t, 1) for t = 100, σ = 1 calculated
numerically.

ε dε = Φ−1
{0,1}(1 − ε) α = 0.05 α = 0.1 α = 0.15 α = 0.2

0.5 0 25.4677 20.7965 17.7532 15.4216

0.3 0.5244 20.7912 16.3664 13.5647 11.4824

0.1 1.2816 14.6251 10.8657 8.66394 7.13512

0.05 1.6449 12.0769 8.78949 6.94727 5.70197
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For k integer, 0 < ε � 1/2, 0 < α < 1 and z ∈ R, for triplet

uz,t,k = udε(α, t, k) + z, ct,k = υ̂tk,ε, τz,t,k = − z

tυ̂tk,εset

ψt,k,α,ε(z) = Pµ{Mt(uz,t,k, ct,k, τz,t,k) < 0}.

-10 -7.5 -5 -2.5 2.5 5
z

0.2

0.4

0.6

0.8

1

Figure 1: ψt,1,α,ε(z) for ε = 0.3, dε = 0.5244, α = 0.2, t = 100, σ = 1, udε
(α, t, 1) = 11.4824 (solid line),

for ε = 0.5, dε = 0, α = 0.2, t = 100, σ = 1, udε
(α, t, 1) = 15.4216 (dashed line), and the level β = 0.3.
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Theorem 2. For k integer, 0 < ε � 1/2, 0 < α � β < 1, z ∈ (−udε(α, t, k),∞) and
for triplet

uz,t,k = udε(α, t, k) + z, ct,k = υ̂tk,ε, τz,t,k = − z

tυ̂tk,ε
the equation

Pµ{Mt(uz,t,k, ct,k, τz,t,k) < 0} = β (i.e. ψt,k,α,ε(z) = β)

has exactly one non-positive root

zlow
t,k (α, β, ε) � 0

with the equality sign if and only if α = β.

Definition 2. The value

ulow
t,k (α, β, ε) = udε(α, t, k) + zlow

t,k (α, β, ε)

is called lower bound of a strip zone corresponding to levels α and β.
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5. Performance of adaptive control strategies

Targeting (corresponds to the Equity Principle)
Targeting means ability to keep year-by-year the risk reserve process inside a strip zone cen-
tered around a target value.

Solvency (corresponds to the Solvency Principle)
Solvency means existence of satisfactory upper bounds on the probability of ruin within each
insurance year and within a sequence of successive insurance years.

Dynamic solvency provisions
Dynamic solvency provisions are those funds which are accumulated in the profitable years,
i.e. when the year-end risk reserve exceeds the upper bound of the strip zone, and consumed
in the deficiency years, i.e. when the year-end risk reserve felt below the lower bound of the
strip zone.
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Targeting

Theorem 3. For 0 < α < 1, 0 < ε � 1/2, for multiperiodic controlled insurance process
agreed with Stable Nature Scenario and Markov strategy, all mean year-end capitals equal to
udε(α, t, 1) + σt1/2dε, i.e.

Eπ,γ
µ W 〈1〉

k = udε(α, t, 1) + σt1/2dε

for all µ ∈ M = [a, b] and k = 1, 2, . . . .
In particular, for ε = 1/2,

Eπ,γ
µ W 〈1〉

k = u0(α, t, 1)

for all µ ∈ M = [a, b] and k = 1, 2, . . . .

Similar result holds true for zone-adaptive non-Markov strategy.
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Solvency

Theorem 4. For 0 < α � β < 1, 0 < ε � 1/2, for multiperiodic controlled insurance
process agreed with Stable Nature Scenario and zone-adaptive non-Markov strategy

Pπ,γ
µ {first ruin in year k} � β

for all µ ∈ M = [a, b] and k = 1, 2, . . . .

Theorem 5. In the assumptions of Theorem 4, for each integer n

Pπ,γ
µ {ruin within n years} =

n∑
k=1

Pπ,γ
µ {first ruin in year k} � nβ.
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Dynamic solvency provisions

Definition 3. For 0 < α � β < 1, 0 < ε � 1/2, for multiperiodic controlled in-
surance process agreed with Stable Nature Scenario and zone-adaptive non-Markov strategy,
the variable

∆t(w
〈1〉
k ) =




0, ulow
t,k (α, β, ε) � w

〈1〉
k � udε(α, t, k),

w
〈1〉
k − udε(α, t, k), w

〈1〉
k > udε(α, t, k),

−(ulow
t,k (α, β, ε) − w

〈1〉
k ), w

〈1〉
k < ulow

t,k (α, β, ε)

is called k-th year excess (of either sign) of capital.

Theorem 6. For 0 < α � β < 1, 0 < ε � 1/2, for multiperiodic controlled insurance
process agreed with Stable Nature Scenario and zone-adaptive non-Markov strategy

Eπ,γ
µ ∆t(W

〈1〉
k ) > 0

for all µ ∈ M = [a, b] and k = 1, 2, . . . .


