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ABSTRACT. Profits in property and liability insurance tend to rise and fall in fairly
regular patterns lasting between five and seven years from peak to peak; this phe-
nomenon is termed the underwriting cycle. For a particular insurer, the cycles may
be caused by difference between the price prevailing in the market and price of the
risk in the insurer’s portfolio. In this paper a multiperiod Lundberg-type control
model of insurer’s response to the cycle generated by the competition is developed.

1. Introduction

It is largely recognized (see e.g., [25]) that the long-term variations called “business
cycles”, are typically common for the most insurers and have several potential causes.
There exists convincing evidence that the cycles are a fundamentally characteristic fea-
ture in most non-life business likely in all countries of competitive insurance market.

Understanding the driving forces of the underwriting cycles is a paramount theoret-
ical problem, a key for understanding the nature of this phenomenon and a leverage for
rational management. It attracts constant attention of many parties, including managers
and experts in economical and actuarial studies.

There exist at least two major interpretations of the cyclic behavior in insurance. One
ascribes the cycles to the fluctuations due to random surroundings, to volatile interest
rates, or to random up- and down-swings of the risk exposure in the portfolio. Typically,
such fluctuations can not be foreseen and their dynamics is known deficiently since its
origin used to be exogenous with respect to the insurance industry. It causes inevitable
errors in the rate making, and irregularly cyclic underwriting process ensues.

The other assigns the cycles to the strategies of aggressive insurers seeking for greater
market shares, and by the consequent industry response. At the first stage, the response
consists in concerted reduction of the rates, sometimes below the real costs of insurance.
This makes some companies ruined, and agrees with the observation that insurance cycles
are correlated with clustered insolvencies. For instance (see [14] with reference on Best’s
Insolvency Study [4]), US industry-wide combined ratios peaked at 109% in 1975 and
117% in 1984. The insurance failure rate, or the ratio of insolvencies to total companies,
peaked at 1.0% in 1975 and 1.4% in 1985. Insolvencies appear a driving force behind the
competition originated cycles since after elimination of the exceedingly aggressive and
unwise agents, or just weaker carriers, the prices increase uniformly over the industry
and the upswing phase of the cycle follows.

Key words and phrases. Underwriting cycles, Years of soft and hard market, Multiperiod insurance
process, Solvency, Adaptive control strategies.
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As underwriting cycles are due to competition, their downswing phases can have
a particularly significant impact on the financial strength of each property and liability
insurer who may be either ruined, having risk reserve exhausted because of too low price,
or loose his business, having clients switched to those who have better prices. All that
deserves thorough quantitative studies.

In the business and economical literature valuable contributions concerning insurance
cycles abound. Among so many issues exploring the driving forces and the development
of the cycles are [28], [6], [11], [18], [10], [14]. The latter publication is a convictive
insight into the two different interpretations of the cycles in insurance; it provides as
many as 109 references, yielding a comprehensive account of the modern state-of-art in
the field.

There is however much less in the risk theory literature providing tools to quantify the
additional risk associated with the underwriting cycles. Pentikédinen (see e.g., [25]) and
then Daykin et al. [9] study relationship between the underwriting cycles and the ruin
probabilities using mostly simulation techniques. Under the title of “dynamic financial
analysis” that approach is further developed (see, e.g., [8], [17]). Providing conclusions
drawn on the basis of empirical data, Rantala [26] discussed some potential background
factors in cycle fluctuations and applied control-theoretical tools in the framework of
autoregressive models. Seeking for a model of competition originated underwriting cycles,
Feldblum [14] models the cycle by assuming that the risk loading and the claim rate follow
a non-random trigonometric function. His surplus model allows the insurer to vary the
price in response to the cycles, loosing or acquiring the market share. More complex
theoretical insight into the general periodic behavior of the risk reserve process may be
found in Asmussen and Rolski [3] who applied a Markovian model. From the premises of
the individual approach, Subramanian [29] addressed solvency and market share balance
while competition in the framework of a bonus—malus system.

The objective of the present paper is to contribute to quantitative analysis of the risk
associated with the underwriting cycles. It develops the dynamic approach of [21]-[24].
While in [21] and [24] emphasis is made on harmonization of the equity and solvency
requirements, i.e. on the correct rate making procedures, and further on deficiencies
introduced by the exterior ambiguities limited by the so-called scenarios of nature, the
present paper accentuates the cycles generated by competition.

As in [21] and [24], we do not intend to analyze in the present paper the real
economical mechanism of the underwriting cycles. Rather, we focus on the question of
how an insurance company can model and overcome the downswing phase of the cycle
given that it occurs in consequence of a series of k underwriting years of severe price
competition, called years of hard market, implemented in a series of descending market
prices PM > ... > P,iw > 0, all below the average risk EY of a particular insurer.

Since the period k of the underwriting cycle is known to be about six years, sensible
is to analyze the cyclic evolution by means of a dynamic multiperiod model. Such a
model, allowing for annual accountings and annual controls, was considered in [21]-[24].
It is described as

Yo T T—1 Yk—1 Tk

My —> Uy —> 10y --+ ——= 0§ —— Upq —> Wf -+, (1)
——— —_—
1st year, P on kth year, PMay,

where to;,_; is the state variable observed at the end of (k —1)th year, v;_1 is the control
rule yielding the control variable u;_; at the beginning of kth year, m; is the probability
mechanism of insurance in kth year, oy is the ruin level allowed in kth year. In [21]-[24]
diverse 7, and 7y, were analyzed.



SURVIVE A DOWNSWING PHASE OF THE UNDERWRITING CYCLE 3

The paper is organized as follows. In Sections 2 and 3, we define the years of soft
and hard market and discuss the dynamics of portfolio size. Annual risk reserve process
are discussed in Section 4. Emphasized is underwriting, while investment, dividends
and expenses components of the surplus process are ignored. The rationale is that a
downswing phase of the underwriting cycle may coincide with a global recession and e.g.,
investment becomes unfit to compensate the underwriting losses, leaving alone dividends
and other outpay. Probabilities of ruin in years of soft and hard market are considered
in Section 5. Admissible risk reserve and premium controls are discussed in Section 6.
Annual probability mechanisms of insurance to be used in the multiperiod model (1) are
considered in Section 7.

2. Price in the years of soft and hard market

Seeking for the Lundberg-type collective model of the risk reserve process, we address
first separate insurance years, or consecutive segments in the chained multiperiod model
(1). In the sequel, the risk size in the portfolio is assumed stationary, i.e. the distribution
of the claim amounts is the same as of a random variable Y independent on time. More
light upon the economical meaning of the term “price” used below, which is rater price
factor, or price rate, will be shed in Section 4, where the Lundberg-type collective model
is introduced.

DEFINITION 2.1 (Market price factor). The insurance price PM prevailing in the
market is called market price, or market price factor.

The year of soft market occurs for a particular insurer when the market price factor
is below the averaged losses EY. Hard market for a particular insurer occurs otherwise.

DEFINITION 2.2 (Years of soft and hard market). The insurance year is called year
of soft market (for a particular insurer), if EY > PM. The insurance year is called year
of hard market (for a particular insurer), if EY < PM.

2.1. Insurer’s price control and price deficiency. Denote the insurer’s price
factor by P. Given PM | selection of P for a particular portfolio means a price control.
It may be done in a number of different ways and entails different consequences.

DEFINITION 2.3 (Insurer’s price control). Assume that P = PM. Then the insurer
applies maintaining market share control. Assume that P = EY. Then the insurer

applies conserving capital control. The insurer applies mized control, if PM < P < EY,
as PM < EY (soft market), and EY < P < PM as EY < PM (hard market).

Without lack of generality!, the set P of price controls introduced above may be
written as
P, =yPY +(1-y)EY, 7y€0,1], (2)
with P, = P™ and Py = EY.

REMARK 2.1. When PM < EY (soft market), the set P = {P,,v € [0,1]} is such
that P,, > P., for 0 <y < 72 < 1. Contrariwise, when EY < PM (hard market), the
set P = {P,,v € [0,1]} is such that P,, < P,, for 0 < y; < 7o < 1. When PM = EY
(neutral market) the set P consists of a unique price.

1In the case of soft market (ie., EY > PM) prices P below PM cause excessive danger of ruin, while
prices P above EY yield excessively high rate of elimination of portfolio. Both are claimed unreasonable.
The similar arguments are true in the case of hard market.
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DEFINITION 2.4 (Price deficiency). For v € [0, 1] and for the price P, € P, the value
dv:Pv*PM:(1*7)(EY*PM)
is called price deficiency of P, with respect to the market price factor PM.

LEMMA 2.1. In the year of soft market (i.e., as EY > PM) price P, is monotonically
decreasing, as vy increases, with Py = EY and P, = PM. Price deficiency d, = (1 —
Y(EY — PM) > 0 is monotonically decreasing, as vy increases, with dg = EY — PM >0
and di = 0.

REMARK 2.2. Straightforwardly from Definition 2.4,

€ [0,EY — PM] in the case of soft market, i.e. PM < EY,
dy <=0 in the case of neutral market, i.e. PM = EY,
€ [EY — PM 0] in the case of hard market, i.e. P > EY.

One may remark else that application of the maintaining market share control P, =
PM ie. assuming v = 1 in Eq. (2), yields zero deficiency whichever the insurance year
may be. When v € [0,1), deficiency is positive in the year of soft market and negative
in the year of hard market. In the latter case e, = —d, may be called price excess. In
the year of neutral market, when P consists of a unique point, deficiency is always zero.

3. Portfolio size in the years of soft and hard market

Price deficiency influences the behavior of insureds and therefore the size of portfolio.
Having deficiency positive, the insurer’s price exceeds the market price, which rises the
insureds outflow to other companies. That outflow is in direct proportion to deficiency,
being as more intensive, as larger the deficiency is. Having deficiency negative, the insu-
rer’s price is lower than the market price, which stimulates the inflow of insureds and
grows of the portfolio.

Introduce a family of portfolio size functions depending on the market price and on
the insurer’s price control.

DEFINITION 3.1 (Price deficiency and portfolio size). For v € [0, 1] and for the prices
P, € P with deficiency d, = P, — PM | introduce the family

L={Ag(s), 0<s<t} (3)

of continuous non-negative functions of time, called portfolio size functions. Assume
that A\g, (0) = A. The value X is referred to as the initial portfolio size. In the case of
dy = 0 (neutral market or maintaining market share control, Py = PM) set \q (s) = A,
0 < s <t. When d, > 0 (soft market and v € [0,1)), the portfolio size functions
A, (s) must be monotonically decreasing® in s and Ag, (s) < Aa,, (s) for all 0 < s <,
as dy, > dy,. When d, < 0 (hard market and v € [0,1)), the portfolio size functions
A, () must be monotonically increasing in s and? Ad,, (8) < Aq,(s) forall 0 < s < t, as
dy, > dy, (e, ey < eq,).

REMARK 3.1. Is noteworthy that the deficiency corresponding to the maintaining
market share control P, = PM is always zero, which yields constant portfolio size func-
tions Ag, (s) = A, 0 < s < ¢, whichever the insurance year may be. That agrees with that
control’s name.

°In fact, they may be non-increasing, but we exclude for simplicity the segments of constant behavior
as degenerate.

3When d, < 0, the excess is positive, ey = —dy > 0. Evidently, the inequality ey, < ey, is
equivalent to dy; > dyy.
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Introduce a sub-family of L, with the year-end sizes bounded from below.

DEFINITION 3.2 (Portfolio size with lower bounds). For v € [0,1], L € [0, A], where
A is the initial portfolio size, and for P, € P with deﬁciency d, set

LL:{Ad7(3)7 t >\d L}CL

It is easily seen that L may differ from L only when dy, > 0 (soft market and
v €[0,1)). Evidently, £ consists of the unique constant function A, and Ly = L.

For 0 < s <t, v € [0,1], a few heuristic examples of L are: exponential Leyp, such
that

Ad, (8) = Nexp{—d,s}, (4)
linear Ly, such that
Ad, (s) =sup {\ —dys,0}, (5)
power Loy, such that
Ad, (s) =sup {\ — sign(d.,)sP(4), 0}, (6)
where p(0) = 0, logarithmic Lo, such that
Ad, (s) =sup {\ —d,In(1 +s),0}. (7)

It is noteworthy that selecting £, wise is to address to practice. For example, one may
be based on the following remark (quoted from [29], p. 39): “Surveys of policyholders
have consistently demonstrated some reluctance to switch insurers. In a survey of 2462
policyholders by Cummins et al. [7], 54% of respondents confessed never to have shopped
around for auto insurance prices. To the question “Which is the most important factor
in your decision to buy insurance?”, 40% responded the company, 29% the agent, and
only 27% the premium. A similar survey of 2004 Germans (see [27]) indicated that,
despite the fact that 67% of those responding knew that considerable price differences
exist between automobile insurers, only 35% chose their carrier on the basis of their
favorable premium. Therefore, we will assume that, given the opportunity to switch for
a reduced premium, one-third of the policyholders will do so”.

The concept of the set L of portfolio size functions has to be further developed. For
example, it may be sensible to allow dependence of the portfolio size functions on the

initial risk reserve®.

4. Annual risk reserve process

Assume that fixed are the families P and £ (see Eq. (2), (3)) of the price controls
and the portfolio size functions.

DEFINITION 4.1 (Claim number process). For P, € P with deficiency d, and for
the corresponding portfolio size function \q, € L, the claim number process® is the
nonhomogeneous Poisson process v,(s), 0 < s < ¢, with the yield function Ag (s) =

Jo A, (2)dz, 0 < s <t

In particular, Ev,(s) = Ay (s), 0 < s < t. In the year of neutral market, d, = 0 and
Ag (s) = As, 0 < s < t, which means that the growth of the mean number of claims is
stable, with the constant rate A. In the year of soft market, Aqg. ( fo Ad, ( 2)dz < As
and the growth of the mean number of claims is as slower as 1arger is the tlme, or,

A1t is arguable that the outflow of insureds becomes more intensive from e.g., a smaller company,
for not to mention such an abstract term as the initial risk reserve. That may be checked by means of
a survey of policyholders.

5Generated by the portfolio of variable size >\dﬂ/(s)7 0<s<t
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which is equivalent, as smaller is the portfolio size. In the year of hard market, Ay (s) =
fos A, (2)dz = As and the effect is opposite.

LEMMA 4.1. In the year of soft market (i.e., as EY > PM) the year-end portfolio
size Mg, (t) and the yield function

t
Ad_’ (t) = ‘/0 )\d_’ (Z)dZ
are monotonically increasing, as 7y increases.

DEFINITION 4.2 (Claim outcome process). Assume that Y;,i=1,2,..., arei.i.d. and
independent on the claim number process v, (s), 0 < s < t. The claim outcome process
associated with the portfolio size function Ay, € L is the compound nonhomogeneous
Poisson process

vy (s)

Yy(s) = > Vi (8)

as v,(s) > 0, or zero, as v(s) =0, 0 < s < t.

DEFINITION 4.3 (Premium income process). The premium income process associated
with the portfolio size function A\q, € L and with the premium factor P, is the non-
random process

PyAg, (s) = Py/ Ad,(z)dz, 0<s<t (9)
0

As will be seen later, Definitions 4.2 and 4.3 are essential. We assume premium
income process harmonized in a particular way with the claim outcome process by means
of A\g, € L. Intuition suggests that it is sensible because the premium income at each
time s, 0 < s < t, has to be in direct proportion to the variable portfolio size and
depends on the factor P, allowing for the size of risk. Emphasize it now that P, is
selected independent on time since the size of i.i.d. risks Y;, i = 1,2,..., generated by
that portfolio is assumed independent on time.

DEFINITION 4.4 (Risk reserve process). The risk reserve process generated by the
premium income process (9) and claim outcome processes (8) is the random process

vy (s)
Ruq(s) =u+PyAg (s) = > Y, (10)
i=1
as vy(s) > 0, or u+ Py Ay (s), as vy(s) =0, 0 < s < t. The value u > 0 is called the
wnitial risk reserve.

LEMMA 4.2. For the claim number process v (s),

0 < s<t, one has
vy(s) = Nx(Ag, (s)/A), 0<s<t,

where Nyx(s), 0 < s < t, is the homogeneous Poisson process with intensity \. Moreover,
for the risk reserve process (10),
vy () Na(Aa,, (s)/N)
Ry~(s) =u+ Py Ag (s) — Z Y; = u+ [PyA[(Ag, (5)/N) — Y;.
i=1 i=1

PROOF. See e.g., [5], Theorem 1 on p. 38. O
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LEMMA 4.3. Introduce
. Nix(s)
Ruq(s) =u+[PAs— Y Y, 0<s<Ag (H)/A (11)
1=1
For 7(s) = Mg, (s)/\, 0 < s < t,
Ry (s) =R, (1(s)), 0<s<t. (12)

PRrROOF. The proof is standard (see [5], p. 38—-39 and Section 2.2.3, or [16], Section
2.1 on p. 33, or [2], Remark 1.6 on p. 60). The time 7(s) = Aq (s)/A, 0 < s < ¢, is
known under the name of operational time. Plainly, the passage of that time is no longer
measured in calendar units, but in expected number of claims. O

Direct corollary of Eq. (12) is

oL, Funls) = ossslfgi(t)/k B (s): (13)

5. Annual probabilities of ruin
DEFINITION 5.1 (Probability of ruin). The probability
P{ogslfgtR“”(s) <0}
is called annual probability of ruin, or probability of ruin within time t.
THEOREM 5.1. In the year of soft market (i.e., as EY > PM) the probability
P{ng@Ru,ﬁ,(s) <0}
is monotonically increasing, as vy increases.

PROOF. Bearing in mind Eq. (2) and (13), one has
P{ it Ru(s) <0} = P{ inf Ry, (s) < 0}

OésgAd,Y(t)/A >0
—_—— Nax(s)
:p{ inf ( EY — y(EY — PM)] As — Y;) 0}-
ogsglAI;(t)/A ut| 1l Jrs ; )

Cy

Evidently, in the year of soft market c, is monotone decreasing, as 7 increases, from
co = EY to ¢; = PM, with ¢y > ¢;. By Lemma 4.1, Ag, (1) is monotone increasing, as -y
increases. Both factors contribute to a monotone growth of P{infocs<t Ry (s) < 0}, as
~ increases, which completes the proof. O

REMARK 5.1. The assertion of Theorem 5.1 is not evident, and may be incorrect,
as the simultaneous decrease of cumulative premiums and of compound claims is not
balanced: the former makes the probability of ruin larger, while the latter acts reversely,
and without assumptions like in Definitions 4.2 and 4.3 either may be dominating.

In the case of exponential claim size, an explicit expression for the annual probability
of ruin is available.

THEOREM 5.2. Assume that Y;, i = 1,2,..., are i.i.d. exponential with intensity p
and denote by I,(z) the modified Bessel function of nth order, z real andn =0,1,2,....
In that® model

P{ inf R,,(s) <0}= ¢Ad'¥ (t)/A(Ua [Py, (14)

0<s<t

60ften called “classical”.
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where

"»bA(t)/A(U, [PA]) = e "# Z(unL')n (P,U)_(n+l)/2

n=0

A(t)
x / ni 16_(1+P“)Ifn+1(2x\/ Pp)dz. (15)
0

The alternative expression for i,/ (u, [PA]) is

Pao a0 [PA) = bacon(PA) =+ [ filau)d, (16)
where
(1/Pp)exp{—up(l = 1/Pp)}, Pp>1,
Ya(oo) A (U, [PA]) = {1, Pu<l
and

fulwa) = (Pr)~ (1 + (Pu) ™" — 2(Pp)~"/2 cos ) !
X exp {uu ((PM)71/2 cosT — 1) — A(t)Ppu (1 + (Pp)™t —2(Pp)~ Y2 cos x) }
X [cos (uu(Pu)*l/2 sin :c) — cos (uu(Pu)*l/Q sinx + 2:6)} .
PROOF. The proof is straightforward from Eq. (13) and Corollary 2.1 in [22]. O

REMARK 5.2. To prove Theorem 5.1 in the case of exponential claim size, one may
depart from Eq. (15) and check straightforwardly that in the year of soft market

a%P{ inf Ry (s) <0} = e "#(EY — PM) Y (upn)"

0<s<t n!
IS n>0

Ady (1) n+1
bt (@ Pyp) = S (2, Pygi) )
[ (ot P = B (e P o

B) "
rem D a0, 20,
n=0 )

where

. _nt1 on+1 _ -
Ong1 (@, Pyp) = (Pyp) 2 T, ¢ (1+Pyk) L1 22/ Py p).

6. Admissible risk reserve and premium controls

In the model of Section 5 the controls of two different kinds are feasible: the initial
risk reserve control and the premium control. In the year of soft market, admissible
are those controls which do not compel the annual probability of ruin be larger than a
prescribed value « € (0, 1), and the year-end portfolio size be less than a prescribed lower
limit L.

6.1. Admissible risk reserve controls. That kind of control requires provisions
made e.g., during the upswing phase of the underwriting cycle. It is based on the easy
observation that the probability P{infocs<¢ Ry (s) < 0} is monotone decreasing, as the
initial risk reserve u increases.
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DEFINITION 6.1 (Least allowed initial risk reserve). For sufficiently small o € (0,1),
for the price factor P, € P and for the portfolio size function A\g, € £, call

Uy (@) = inf{u>0: P{Oirslquuﬁ(s) <0} =a}

least allowed value of the initial risk reserve’ satisfying the a-solvency condition.

For o € (0,1) introduce ¢, = <I>{_0171}(1 —a/2), where @ 1) (-) is the standard normal
distribution function.

THEOREM 6.1. In the framework of Theorem 5.2, the least allowed value of the initial
risk reserve satisfying the a-solvency condition is

U e () = (EY — Py)Ag (t)(1 +0(1)), t— oo,
asy>1, and
ug (@) = V2XM EY'eo(1 +0(1)), t— oo,

as v =1 (i.e., for the conserving capital control P, = EY').

PROOF. The proof is similar to the proof of Theorem 4.4 in [24] and Theorem 4.1
in [23]. O

6.2. Admissible premium controls. In the year of soft market®, assuming of any
premium control from P is an attempt of making the best of a bad bargain since each
price control is attended with inevitable outflow of the insureds according to a rate from
L, and with a guaranteed deterioration (except, perhaps, for Py = EY") of the solvency
position. On the other hand, that kind of control does not require provisions.

6.2.1. Solvency point of view. From the solvency point of view, admissible premium
control is based on the following.

THEOREM 6.2. For sufficiently small o € (0,1), for the initial risk reserve u and
for the family L, in the year of soft market allowed are the price controls P, € P,
v € (0,702 ()], where vy ) () is the unique solution of the equation

P{ogf@R“W(S) <0} = a, (17)

as P{infocscs Ru,1(s) <0} = o, and vy e (o) =1, as P{infocscr Ru1(s) < 0} < a.

ProOOF. This result follows directly from Theorem 5.1 which claims monotone in-
creasing of P{infocs<; R, ,(s) < 0}, as +y increases, in the year of soft market. It shows
that allowed are the price controls from a right neighborhood of the conserving capital
control Py = EY. [l

In the classical case the numerical solution 7 ,c (o) of Eq. (17) is easy to get by
means of Eq. (14) and (16) which yield an explicit expression for P{info<s<: Ry ~(s) < 0}.

We address the analytical approach. The key point is to devise an explicit expression,
or a manageable approximation to the left hand side of Eq. (17).

To formulate the first result in that direction, introduce a shorter notation: put ;4
for th,u\L(a)a set

P{ inf R,,(s) <0} =1,(7)

0<s<t

"Evidently, P{infogsct Ru,v(s) <0} < a for u > uy 4 (@).
8The counterparts of the results below in the case of hard market are omitted for brevity, but
obtained by the author.
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and note that in the year of soft market P{infocscoo Ruy(s) < 0} = 9, (7) = 1.
Introduce the probability of ultimate ruin after time ¢,

and note that ¢¢(Ve,a) =1 — ¥, (.a) = 1 — «, which yields
Voo = d)t_l(l —a).

THEOREM 6.3. For 7., = —y(EY — PM)/EY, v € (0,1], set ay, = (1 — \/T+7,)?
and by = 1/+\/1+7,. In the framework of Theorem 5.2, one has 7, < 0, and

b2 (brup + 1 b3 (up)? _
wlr) = zﬁai (A?J))g/z et e O exp { - 41(: 2) Hu+oms e}

for u < Q(AZQ(t)), as t — .

PrOOF. The proof applies explicit expression (15) in Theorem 5.2 and the expansions
technique introduced in Section 3 of [23]. That result is a counterpart of one in [30]. [

The second result, suitable for u > Q(AZ %(t)), as t — oo, is the following Normal
approximation.

THEOREM 6.4. For 7., = —y(EY — PM)/EY, v € (0,1], assume that 7., < 0. Then

sup [4,(7) — @g0.13((Ad, (1) — Mrup) /(Sr, (up)'/?)| = O(u™'?), as u — oo,

teR+

where M. = —1/7,, S2 = -2/73.

T

PROOF. The proof is easy and follows either from Theorem 5 (I) in [19], or from
Section 3.1 in [22]. O

Asymptotic expansions in Theorem 6.4 may be further developed following [19], and
large deviations, as u > O(Aq_ (t)), as t — oo, may be obtained following [20].

6.2.2. Portfolio size point of view. From the portfolio size point of view, admissible
premium control is based on the following.

THEOREM 6.5. For sufficiently small o € (0,1), for the initial risk reserve u and for
the family L, in the year of soft market allowed are the price controls P, € P, v € [y, 1],
where

YL = mf{’)/ € [O, 1] : Adv (t) = L} >0,
as Mg, (t) < L, and yp, =0, as A\g,(t) = L.
ProOF. This result follows directly from Lemma 4.1 which claims monotone increas-
ing of the year-end portfolio size Ay (t), as 7 increases, in the year of soft market. It

shows that allowed are the price controls from a right neighborhood of the maintaining
market share control P, = PM. O

COROLLARY 6.1. Theorems 6.2 and 6.5 yield the set of the annual price controls
allowed from both solvency and portfolio size points of view. This set is

P’y S Y E [0, 7t,u|£(a)] N [’YLa 1] = [’YLaPYt,u\L(O‘)]'
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6.3. A strategy beating the downswing phase of the cycle. Further prefer-
ence among the admissible controls is unspecified until more criteria are introduced. It
may be noteworthy that the set of admissible controls is dependent on the initial risk
reserve u. Typically, the latter is set equal to the risk reserve at the previous year-end.
In that sense the consecutive annual controls, depending on the previous year financial
result, give rise to an adaptive control strategy.

For the family £ and for a sequence u,wy, . .., wg_1 of the initial risk reserve values?,
as the (¢ — 1)st year-end risk reserve is assumed equal to the initial risk reserve in ith
year (i = 2,...,k), the adaptive control strategy beating the downswing phase of the
insurance cycle with the period k, generated by the market prices P} > ... > PM >0,
all below the average risk EY, is

Pl(u) = P’Y: Y€ [7L77t,u|£(al)]a if [7L57t,u|ﬁ(al)] 7é g,
Pa(wr) =Py, v € [vp: Y 2 (a2)]; i [Ye, Ve 1o (@2)] # 9, (1)
Py(wr—1) = Py, v €L, Yoo ao(@r))s i [voa Yewe 1o ()] # @.
Recall (see (1)) that o, ..., ay are the allowed levels or ruin within the downswing phase
of the insurance cycle!?.
Plainly, for « > 0 and for v > wy; > -+ > wg_1, which is the typical case in
the downswing phase, one has v e (@) = Yw,je(@) = - = Yw,_, o (). Rigorous
probability model for the trajectories (u,ws,...,wg—1), formalizing the diagram (1),

requires a formal definition of the annual probability mechanisms of insurance.

7. Annual probability mechanism of insurance

In this section we consider the annual probability mechanisms of insurance 7, fit to
the multiperiod model (1) with the adaptive!! control strategy (18). In that model no
risk reserve control is applied: each year the initial risk reserves will be set equal to the
risk reserve at the previous year-end.

Consider the risk reserve process (10),

vy(s)

Run(s) = ut Py Ag (s) = 3 Vi,

i=1
where 0 < s < t. For v € Rt and Borel set A introduce the kernel
m(A,ruin | u, Py) = P{R,,(t) € A, oirslfgtR""y(s) <0},
mi(A,no ruin | u, Py) = P{Ry4(t) € A, 0il;f@Ru,y(s) >0}
=P{R,,(t) € A} —m (A, ruin | u, Py)
and note that
0 < m (A, ruin | u, Py) < P{Oinquu,,y(s) <0}

and
0 < m(A,no ruin | u, Py) < P{R, ~(t) € A}.

9Bearing in mind diagram (1), more accurate is to say that w1, ..., wg_1, being the year-end values
of the risk reserve, are the state variables, and u;—1 = w;—1, i = 2,...,k, being the initial risk reserves,
are the control variables; the vector of the control variables is therefore w, w1, ...,ug_1.

10por capital-dependent L the values 1, become capital-dependent.

111y that sense that the control depends on the previous year financial result.
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More delicate analysis is possible when the time-transformed process (11) is Poisson—
exponential. That analysis is based on the joined distribution of the time of ruin'?
# =inf{s > 0: R, (s) <0} and of the corresponding deficit at ruin & explicit (see, e.g.,
[15]) in the classical case, since

T (A, ruin | u, Py) = P{Ry(Aq, (t)/X) € A’ogsgkri(t)/A Ru(s) <0}

oo pAa, (t)/X . A
_ /O /O P{# € ds,d € dyYP{R_y (A (1)/N) — 5) € A}.

It is shown in [1] that in the Poisson—Exponential model 7 is independent on 5; the latter
is exponential with parameter p. It yields

oo . Ad., )/ .
(A, uin |, P,) /O P{5 < dy} /O P{# € ds}P{R_, . ((Aa. (t)/N) — s) € A}

oo Aa, (t)/X R
_ / Jie—dy / P{+ € ds}P{R_, ((Au (£)/A) —s) € A}.
0 0

The explicit expressions for 7;(A, ruin | u, P,) are yielded therefore by Theorem 5.2 and
by the results of the following kind.

THEOREM 7.1. In the framework of Theorem 5.2, for real x,
P{R,,(t) <z}=
1, r>u+ PyAg (),
_ )1 —ehe® e*Ad.y(t)\/m
ut+PyAg, (t)—x
X/o 212y (2 P, (t)z) e M dz, x<u+ PyAg (1),
where I1(-) is the modified Bessel function of unit order.

PROOF. Proof is straightforward from Lemma 4.3 and Theorem 2.1 in [22]. O

Acknowledgments. The paper is inspired by the works of Teivo Pentikédinen and
his school, to whom the author is grateful.
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