SCENARIO ANALYSIS FOR A MULTI-PERIOD
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ABSTRACT. This paper extends and develops the results in the paper [9]. Dealing with a simplistic
diffusion multi-period model of insurance operations, it illustrates the adaptive control approach
when the object of control is harmonization of the solvency and equity requirements. With regard
to [9], the main novelty is the incomplete knowledge of the forthcoming risk which is quite often
the case in insurance. Represented by a scenario of nature, it introduces new and inevitable
randomness in the model and induces qualitative difference beside the case of completely known
risk.

1. Introduction

In the papers [7]-[9] the insurance process is viewed as a series of successive insurance periods
called years. Fach year starts with a manager’s adaptive, or sensitive to the financial results in
the previous year, control decision. The insurance operations are represented by a probability
mechanism. The manager’s decision concerns tariffs, reserves and other operational characteristics
of the probability mechanism of insurance. By the nature of insurance, that control decision typically
remains in force throughout the whole insurance year, i.e., until development of the next year-end
financial report and subsequent control intervention.

The adaptive control approach in insurance modelling is inspired by many scholars including
K. Borch who claimed back in 1967 that “general formulation of the actuary’s problem leads directly
to the general theory of optimal control processes or adaptive control processes” and “the theory
of control processes seems to be “tailor-made” for the problems which actuaries have struggled to
formulate for more than a century” (see [2], p. 451).

The object of control set forth in [7]-[9] was harmonization of the solvency and equity re-
quirements. Solvent controls mean that a prescribed probability of non-ruin must be guaranteed
uniformly on the past-years financial results, whichever external particulars within certain limits
might be. Equity requires premiums well-balanced with claims, loaded with an amount necessary
to provide adequate security for the insureds, rather than benefit those who seek unearned profit.
It means that the insureds ought to pay premiums which are sensibly concentrated around the long-
run mean value of their losses. In that sense the customers will not be overcharged, but only in the
long run (i.e., in the average throughout several insurance years), while in the separate insurance
years the premiums may be above or below average. Insurers, spreading the cost of random losses
among the policyholders, and over time, act as a buffer against claim fluctuations in consecutive
years.

Key words and phrases. Multi-period insurance process, Diffusion annual mechanisms, Volatile scenario, Sol-
vency, Equity, Adaptive control strategies.
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Related is the problem of discrimination of the risk reserves, capital and special purpose provi-
sions' (see, e.g., [4]). Bearing in mind the principle of equity, risk reserve must be held large enough
to secure solvency, but at the expectation, called “target” or “fair” capital value. Otherwise, one
would argue that it is used to cover the unexpected, and it is right. But the probability is small
that the risk reserve will end up at the expectation at the end of the year. It will most probably
be above or below the expectation and from time to time much above or below, the more so, the
larger the manager’s prediction disagrees with the actual dynamics of nature. It makes carrying the
appropriate risk-based provisions, such that over many years one will still be at the expectation, an
important problem of the insurance management. The present paper addresses that problem from
theoretical premises of dynamic solvency provisions set for zone-adaptive annual controls.

The economic bearing of the object of control considered in [7]-[9] and in the present paper is
therefore a cautious and equitable asset-liability and solvency adaptive management. Sophistication
of the model may lead to additional rational priorities and to more complicated objects of control
but does not injure the fundamental nature of the adaptive control concept of this paper.

It should be emphasized that the adaptive rather than optimal control is the main concern of
the paper. The optimal control usually aims the single-purposed objectives like e.g., maximization
of the insurer’s profit?>. Even under some restrictions on ruin and some kind of equity determined by
the market, it yields quite a different mathematical game which lies outside the scope of the present
paper. The optimal control is rather traditional set-up in actuarial mathematics (see, e.g., [1], [11]),
but the objectives like “to find the policy which maximizes the expected total discounted dividend
pay-outs until the time of bankruptcy” (see [11], p. 105) were severely criticized as deficient in the
insurance context (see quotation from C.-O. Segerdhal on p. 392 of [9]).

Plain is the idea that insurance deals with such uncertainties as random claim arrival and
random claim severity. Even more uncertainty immanent for the insurance business is due to the
randomness called scenario of nature. Quoting Norbert Wiener (see [12], p. 90), it results in an
uncomfortable resemblance of that — insurer’s vs. nature — economic game to the Queen’s croquet
game in “Alice in Wonderland”. Wiener emphasized that such resemblance exists in all economic
games where the rules are subject to important and, put it in addition, random revisions. To be
particular, recall for example that change of climate around us impacts and will increasingly impact
many sectors of business and society. The most profound effects are likely to be associated with
changes in rainfall and hazardous weather, but fortunately climate models are reaching a level of
sophistication where they can be used to guide decision-making at the regional and local level.

It is recognized (see e.g., [2], p. 451) that the insurance company, being incompletely informed,
needs to devise

(i) an information system: a system for observing the insurance process as it develops,
(ii) a decision function: a set of rules for translating the observations into action.

The latter means in particular that a manager’s control which fine-tunes tariffs, reserves and other
operational characteristics of the probability mechanism of insurance in a series of successive in-
surance years, called strategy and developed under deficiency of information, should be thoroughly
analyzed by actuaries to make its impact on the insurer’s business clearly understood.

Two commonly accepted techniques aimed to evaluate the impact of deficiency of information on
the insurer’s business are scenario analysis and stress testing. The former considers typical, favorable
and unfavorable scenarios of nature. The latter refers to shifting the values of the individual

"Many parties to the insurance business are very attentive to that problem by other reasons than equity: reserves
belong legally to the policyholders while capital belongs to the shareholders; risk reserve should be invested at the
risk free rate, while the capital can be invested in riskier and more rewarding assets; taxation of risk reserves and
capital is different.

2Standing by the side of insurers, wise is to care for the insureds as good shepherd cares for his sheep. In that
sense the position of those who wish to win clients’ loyalty, or merely avoid they outflow, may agree with the object
of control set forth in the paper. More technical discussion is deferred to Section 2.4



SCENARIO ANALYSIS FOR A MULTI-PERIOD DIFFUSION MODEL OF RISK 3

parameters in the model that affects critically the insurer’s financial position. Largely, both apply
simulation.

The present paper’s purpose is to accentuate the risk theory-based, analytical approach. Re-
garding the general multi-period model of risk (the control-oriented reader may wish to start from
formal definitions deferred to Section 3), each trajectory may be diagrammed as

Yo s Te—1 Yk—1 Tk
Wy 4= Uy —> 0] -+ — 0] — U] —> 10 -+ . (1)
N——— N——
1-st year k-th year

According to this diagram® (for k = 1,2,...), at the end of (k — 1)-th year the state variable to),_;
is observed. It describes the insurer’s position at that moment and may be of a more complex
structure than just a real-valued surplus. Then, obeying certain rules called scenario, the nature
selects at the beginning of the k-th year a value influencing the forthcoming annual risk, while
the control rule y;_; is applied by the insurer to choose the control variable ux_;. The structural
assumption that nature is acting first, before insurer, at the beginning of the incoming insurance
year, and that the lag between their actions is negligible, may be easily weakened. In what follows,
it is accepted for simplicity. Typically, making his control decision, insurer remains ignorant about
the nature’s choice. He acts bearing in mind the limitations induced by the scenario, if the latter is
known, and applying the past-year data* wj_; to the control rule 44_;. Thereupon the k-th year
probability mechanism of insurance unfolds; the transition function of this mechanism is denoted
by 7. It defines the insurer’s position at the end of the k-th year, and the process repeats anew.

Paramount in (1) is the annual probability mechanism of insurance®. In [7], [8] it is generated
by the Poisson—Exponential collective risk model, while in [9] and in the present paper it is diffusion:
the annual probability mechanism of insurance is produced (see Section 3) by the claim out-pay
process Vs(M) = Ms+ o(M)Ws, 0 < s < ¢, and the annual risk reserve process

Rs(u,e, M) =u+cs —Vs(M), 0<s<t, (2)

where wu is the risk reserve at the beginning of the year, called initial risk reserve or starting capital,
¢ is the premium intensity, M is the random claim out-pay rate, o(-) is a known function assuming
positive values and o2(M) is the random volatility; W,, 0 < s < t, is the standard Brownian motion.
In (2), sensible control leverages are both the initial risk reserve and the premium intensity, so that
the control variable is bivariate.

Having specified the annual mechanism of insurance, paramount is to keep track of how the
information is revealed in time. Going back to the diagram (1), introduce the sequence {WLk],O <
s <t} k=1,2,..., of independent Brownian motions and the sequence My, k = 1,2,..., of the
random claim intensities. Assume that these sequences are independent of each other. These two
independence assumptions are sensible regularity ones. The former guarantees independence of the
annual claim out-pay processes Vs[k] (My), k=1,2,..., provided the claim intensities are fixed, the
latter reflects independence of the choice of nature from the particulars of the annual insurance
process, which looks sensible, not to mention lobbying. To concatenate the annual probability
mechanisms (see formalities in Section 3), we address the following simplistic scenario of nature.

DEFINITION 1.1. By the volatile (homogeneous and with known generic risk) scenario of nature
associated with the multi-period model (1) and the annual mechanisms of insurance (2) we mean
the sequence of i.i.d. claim intensities My, k = 1,2, ..., with known generic distribution G.

3In Section 3 the state variables Wy, the control variables uy and the other components of the scheme (1) are
yielded explicitly in the case of our particular interest.
Or, more generally, all the past history Yx_1 = (ug,...,ug_2,m0,...,wg_1). The control based on Yi_; is
called (see [9]) non-Markov, the control ug_1 = vg_1(tog_1) is called Markov.
5The scheme (1) is fit to model non-homogeneous dynamics of the insurance process by means of addressing
different annual probability mechanisms of insurance.
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Going back to the multi-period model (1) with the annual mechanisms of insurance (2), under
the volatile scenario of nature, fair is the premium rate ¢ = EM. By the law of large numbers, it
equalizes in the long-run the many-years average value of the annual claims since, bearing in mind
independence of M and {W,,0 < s < t},

EVi,(M) = E(Mt +o(M)W,) =EM - ¢.

Appropriate selection of the two control leverages ¢ and w in (2) must compensate purely random
fluctuations of the stochastic process V;(m), 0 < s < t, around a “target” or “fair” capital value to
be defined later and the errors due to the difference between the unknown but actual realization m
of the random variable M and the heuristic but average value EM.

Following recommendations to supplement the analysis of a model with a clear warning of
its restricted applicability (see [5], Chapter 1, Section 5.5, p. 154), emphasize it that we deal
with simplistic diffusion annual mechanism (2) and simplistic volatile scenario, but do that with
purpose. Simplistic model allows us a transparent mathematics, and yields a telling illustration of
the adaptive control approach. For computer-oriented analysts extension on more general annual
mechanisms is straightforward by means of numerical solution of the basic equations introduced in
Section 2. For those who cares for more realistic probability background, variety of approaches is
available. In particular, applying [7], [8], one may easily extend the results of the paper on the
Poisson—Exponential case. Overall, the simplistic models may hint on how to attack more realistic
insurance risk models, when no hope of such reward as explicit formulae exists.

The rest of the paper is arranged as follows. Section 2 develops the concepts introduced in
the framework of complete information in [7]-[9]. Section 3 is devoted to rigorous definition of the
multi-period diffusion model under the volatile scenario of nature and to the analysis of the equity
and solvency properties of certain adaptive control strategies. Section 4 contains auxiliary results.

2. Synthesis of the annual adaptive controls

This section is devoted to the annual development of the insurance process. It is preparatory
for the multi-period modelling and for the strategy design of Section 3. We denote by ®(x) the
standard normal distribution function and by ¢(z) its density function. For 0 < v < 1, denote by
ky = ®71(1 — ) the (1 — v)-quantile of ®(z).

2.1. Annual solvency criteria. Formulate an assumption and two definitions.

AsSSUMPTION 1. In the diffusion generic model (2) the random parameter M is non-degenerate,
with c.d.f. G and support M C RT.

In the framework of diffusion generic model (2), for m € M, set
= 1 = > .
P, (u,c,m) P{OérslfgtRs(u,c,M) <O0|M=m}, t=0 (3)

The control variable is bivariate (u,c), in the sequel being a function of the past-year-end capital.
Introduce two annual solvency criteria which modify the standard one.

DEFINITION 2.1. The adaptive control (u(w),c(w)), where w is the past-year-end capital, sat-
isfies the a-level (0 < a < 1) conservative, or uniform, solvency criterion if

sup 4, (u(w), c(w),m) < o (4)
w>0,meM

DEFINITION 2.2. The adaptive control (u(w),c(w)), where w is the past-year-end capital, sat-

isfies the a-level integral solvency criterion if

sup P{ inf R,(u(w),c(w), M) <0} = sup /th(u(w),c(w),m) G(dm) < a. (5)

w>0 0<s<t w>0
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REMARK 2.1. In the particular case of the bounded support M = [,umin,,umax], 0 < fmin <
Mmax < 00, when the possible choice of the nature is a priori known not to exceed the known value
Jmax, the claim intensity pimax is the most unfavorable case for the insurer,

sup ¢t(u(w)7 C("LU), m) = Sup ’lpbt (U(UJ), C(IU), ,umax)a
w>0,meM w>0

and (u(w), c(w)) satisfies the a-level conservative solvency criterion if

sup P (u(w), c(w), pmax) < . (6)

ASSUMPTION 2. Assume in what follows that M = [fmin, 00), 0 < fimin < 00, i.e., only the lower
bound gy of the claim intensity, or the most favorable case for the insurer, is a priori known.

The conservative solvency criterion may be called “egalitarian” with respect to all realizations of
M since it treats alike “liable” (moderate) and “force-majeure” (large) values of M. It is exceedingly
restrictive, while the integral solvency criterion attributes proper weights to different choices of the
nature by means of c.d.f. G. Therefore, the latter is more probabilistic in nature.

Recall that p, (0 < a < 1) such that P{M > u,} = a, or G(pe) =1 — «, is called (1 — a)-
quantile of c.d.f. G. Since we are not seeking for generality, introduce the following assumption
which guarantees that u, exists and is unique.

ASSUMPTION 3. Assume that G is absolutely continuous.
The reader will easily extend the arguments to e.g., discrete G and bounded M.

DEFINITION 2.3. The adaptive control (u(w),c(w)), where w is the past-year-end capital, sat-
isfies the (a1, ae)-solvency criterion with «; € (0,1/2), i = 1,2, if for the (1 — aq)-quantile pq, of
cdf G

sup ¢t (U(w)ac(w)am) < Qg. (7)
w>07m<l‘a1

The adaptive control (u(w),c(w)) satisfies the (1, ag)-solvency criterion sharply if

wt (U(w)a C(U)), /Lal) = Q2
for all w > 0.
THEOREM 2.1 (Sufficient conditions of integral solvency). Assume that the adaptive control

(u(w), c(w)) satisfies the (a1, az)-solvency criterion. Then it satisfies the (a1 + ag)-level integral
solvency criterion.

Proor oF THEOREM 2.1. It is noteworthy that

sup wt(u(w),c(w),m) = sup wt(u(w)vc(w)vﬂal)'
w>0,m<;¢a1 w>0

Bearing in mind (5), the simple inequalities

sup P{ inf R,(u(w),c(w), M) <0} < sup/< wt(u(w),c(w),m)G(dm)Jr/ G(dm)

w>0 0<s<t w>0 M> oy

< Sug ¢t(u(w)7c(w)vm) + P{M > :LLOél} = Su% ¢t(“(w)vc(w)vﬂm) +tar<a+o
w>0,m< o, w>

yield the result. g
We will be concerned mostly about the controls which satisfy the (a7, as)-solvency criterion

and, consequently, the (a; + ag)-level integral solvency criterion. It means that we can confine
ourselves t0 M € [fmin, Hay s Hmin > 0, and disregard the other outcomes “of rare occurrence”.
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2.2. Level capital and premium intensity. Introduce two key components of the adaptive
control rules. The existence and the structure of these components in the diffusion framework will
be discussed in Theorems 4.4 and 4.5.

DEFINITION 2.4. For «; € (0,1/2), i = 1,2, and for the (1 — «1)-quantile u,, of c.d.f. G the
solution g, ¢ (¢, fta, ) of the equation

’lrbt(u:C: ,u!ll) = Q2 (8)
with respect to u is called apg-level initial capital corresponding to the claim intensity p., and
premium intensity c¢. The solution c,, ¢(u, tto,) of Eq. (8) with respect to ¢ is called as-level
premium intensity corresponding to the claim intensity p,, and initial capital u.

REMARK 2.2. By definition, cay t(Uas,t(C, oy )s Pay) = € Uan,t(Can,t (Us oy )s fhay) = U.

2.3. Rigid (non-adaptive) controls. Disregard of principles other than solvency may lead
to a safe, but unsatisfactory control. Demonstrate it by means of two simple illustrative examples.
For the past-year-end capital w consider «; € (0,1/2), 4= 1,2, and g € [ftmin, Hay s Hmin > 0.

ExaMPLE 2.1 (Lowest premiums and highest starting capital). The control with as-level start-

ing capital and with lowest premiums®,

a(w) = Uagy,t (Cmina /Loq)a E(w) = Cmin; (9)

where ¢pin = fmin, satisfies the (aq, ag)-solvency criterion sharply. Indeed,

¢t(a(w)a E(w), tay) = Wi (Uay i (Cmins Hay ) Cmins Ha, ) = Q2
by definition of tay ¢(Cmin, fa, ). By Theorem 2.1, the control (9) satisfies the (a1 + ae)-level integral
solvency criterion.

This control implies borrowing and “freezes” the insurer’s capital. It seems to undercharge the
insureds, which contradicts the principle of equity even in its most primitive form: “no premium
— no insurance”. An additional disadvantage consists in the following. Any sensible control must
hold risk reserve large enough to secure solvency, but at the expectation. Otherwise, one would
rightfully argue that it is used to cover the unexpected. Taxation of the risk reserves and capitals
reflects this requirement, being larger in the latter case. It makes raising capital more expensive
than, e.g., holding equalization reserves (see [4]).

ExAMPLE 2.2 (Highest premiums and lowest starting capital). The opposite extreme case of
hedging against insolvency is yielded by the control with highest premiums’ and lowest starting
capital,

U(W) = Uy t (Cona, flay )5 C(W) = Cmaxcs (10)
where Cpax = fla,- Again, it satisfies the (a7, as)-solvency criterion sharply: by definition of
Uny ¢ (Cmaxs Hay ), ONE has

wt(ﬂ(w), E(w)hu“al) = wt(uamt(cmaXaﬂal)acmaxaﬂm) = Q2.

By Theorem 2.1, the control (10) satisfies the (g + a2)-level integral solvency criterion.

When this control is applied, the insurer’s capital is not frozen, but the insureds are severely
overcharged, which will not be appreciated by the customers and the regulatory authorities.

Both controls (9) and (10) are rigid (non-adaptive) in the sense that they are not sensitive to
the financial results of the previous years and use extensively the premium and the reserve capacities
of the insurer.

6 Assume that to assign the premium rate less than the least possible value of the claims intensity pmin is
considered a kind of self-inflicting behavior and is prohibited.

7 Assume that the highest premium rate cmax can not exceed the upper claims intensity pa; because of ethical
reasons, or because of restrictions imposed by regulatory authorities.
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2.4. “Fair” capital and ultimate equity. The main deficiency of the controls (9) and (10)
is they disaccord with the principle of equity. That principle requires “fair” premiums, well-balanced
with the claims. In particular, it means that the customers must not be overcharged, but only in
the long run: the premiums set in each single insurance year will be inevitably above or below the
average. The “fair” long-time average premium rate is EM since

EV,(M) =EM -t, (11)

so that the average annual claim amount is equal to the total annual premiums.

Bearing in mind Eq. (8), the initial capital uq, +(EM, piq,) is the least necessary to keep the
probability of non-ruin within time ¢ equal to 1 — az when the nature selects the worst possible, the
largest claim intensity pq,, while the insurer is keeping to apply the “long-time-average” premium
rate EM. The capital uq, +(EM, p1q,) may be voted “fair” by those customers who are interested to
pay year-by-year the price balanced around the average for their guaranteed insurance protection.

We name equitable those controls (u(w),c(w)) which are holding the risk reserve large enough
to secure solvency, but at the expectation i.e., around the “fair” capital value uq, ((EM, tia,)-
Otherwise, one would rightfully argue that this provision is used to cover the unexpected.

DEFINITION 2.5. The adaptive control (u(w),c(w)), where w is the past-year-end capital, is
called ultimately equitable®, if

ERt(u(w)a C(UJ), ,ual) = uag,t(EMa Nal)
uniformly in w € RT.

Besides addressing zone-adaptive controls later on in this section, the important device to
control deviations of the risk reserve from the expectation at the end of the year is the risk-based
dynamic solvency provisions held over many years; it bears analogy to the equalization reserves
known in practice.

2.5. Adaptive control satisfying solvency criterion sharply. For o; € (0,1/2), i =1,2,
the adaptive control more sensitive to w than (9) and (10), is
uaz,t(cmina,ual)a w > Uaz,t(cmina,ual)a
U(’LU) = w, uaz,t(cmaxa,ual) < w < Uaz,t (Cmina,uoq)a

uag,t(cmaxa,ual)a 0 <w < uaz,t(cmaxaual)a

(12)
Cmin; w > uag,t (Cmina Koy )a
é(w) = Can,t (W, flay)s  Uas,t(Cmaxs oy ) < W < Uay,t(Cmins Hay ),
Cmax O<w< ua2,t(cmaxa,ua1)a

where Cmin = Mminy Cmax = Ha; -

THEOREM 2.2. The control (u(w),é(w)) satisfies the (a1, az)-solvency criterion sharply and,
consequently, satisfies the (aq + az)-level integral solvency criterion.

PRrROOF OF THEOREM 2.2. The proof is straightforward. By definition of c,, ¢(w, tta, ), for each
Uyt (Cmaxa ,uocl> g w g Uyt (Cmina ,u‘oc1>

wt(ﬂ(w>aé(w>vﬂo¢1) = wt(wvcamt(w?ﬂal)’uo‘l) = g,
for w > UOQ,t(Cmina ,LLOq)

wt (ﬁ(w)a é(w)v ,LLoa) = wt (uoéz,t(cmina Moy )7 Cmin, ,LLOq) = g,

81t may be also called balanced around the “fair” capital value uay,,¢( M, pa, ), or targeted at that “fair” capital
value.
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for 0 < w < Uaz,t(cmaxuuoq)

¢t(ﬁ(w)7 6(10), N‘oq) = ¢t(u&27t(cmaxa Mal)ﬂ Cmax; /’l’al) = Q,
and the adaptive control (u(w),é(w)) satisfies the (ay,as)-solvency criterion sharply. The rest of
the proof applies Theorem 2.1. O

REMARK 2.3. While ©q, ¢ (Cmax; flay) < W < Uqy ,t(Cmins fay ), the control (12) does not apply the
capital borrowing. When the past-year-end capital w is below uq, ¢(Cmax, o, ), it should be risen.
In the opposite case, when w is above gy t(Cmin, fa; ), the excess of capital has to be adsorbed,
e.g., distributed as dividends. Anticipating the multi-period modelling (see Section 3.3), mention it
that wise is to set provisions in the latter case, say, to have them for store in the “years of plenty”
in order to cover deficiencies in the former case, say, in the “years of famine”®.

2.6. Adaptive control with linearized premiums. A technical drawback of the control
(12) is the necessity to calculate cqy (W, tq, ) for each w, i.e., to determine that non-linear function

as a whole. Introduce

- Yo EMa «
Tas,t(W) e 27t§ £ 1)’ (13)

where EM is the ultimately equitable, or “fair” in the sense of Eq. (11), premium rate. Consider
the control with linearized adaptive premium rates,

Uay,t (Cmins flay ), W > Uay t(Cmins Loy )

u(w) = ¢ w, Ugy 1 (Cmaxs far ) < W < Uy t(Cmins flas )

Ugs ¢ (Cmaxs oy )y 0 < W < Uay t(Cmax, oy )s

EM + Tay.t (Uas t (Cmins Haq))y W > Uag t(Cmins fay )s

c(w) = ¢ EM + 7o, 1 (w), Uas ¢ (Cmaxs oy ) < W < Ugy t(Crmins oy )s

EM + Tay t (Uas,t (Conaxs Hay ), 0 < W < Uay t(Comaxs Moy )

where Cmin = Mmin, Cmax = Ha; -

On the one hand, calculation of the unique value g, +(EM, po,) may be easier than calculation
of the non-linear function ¢y, +(w, fta, ). On the other hand, it casts more light on the equity aspects.

The rates EM + 7T,, +(w) with the average price component EM and the adaptive loading
Tas.t(w), either positive or negative, depend linearly on the deviation of the past-year-end risk
reserve w from the “fair” capital value wq, t(EM, p1a,). The case To,¢(w) > 0 corresponds to
the past-year-end deficit under wuq, ¢ (EM, 1o, ), whereas the case 7o, +(w) < 0 corresponds to the
past-year-end surplus over u,, +(EM, pa, )-

THEOREM 2.3. The control (u(w),é(w)) is ultimately equitable.

PROOF OF THEOREM 2.3. When uq, ¢t (Cmax; flay) < W < Ugy t(Cmin, oy ), ONE has
Ry(u(w), e(w), M) = w(w) + &(w) t — V(M)

= () + 1ty (EM. ) + (B3~ 204 vy

= Ua%t(EM, :u‘lll) +EM -1 - ‘/t(M)7

where z(w) = w — Uqy t(EM, pia, ). The similar expression for Ry(u(w), é(w), M) in two other cases
is evident. Bearing in mind Eq. (11), one has

ERt(ﬂ(w)a E(Uj), /Lal) = uazyt(EMa H’al)
uniformly in w € RT. O

9Cf. Bible, Genesis, 41:29 and 41:30.
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REMARK 2.4. The insurance years in the diagram (1) are numbered, while the calendar time
within each separate insurance year is usually replaced by the so-called operational time. It is
related to the size of the business portfolio rater than to the real time. It means that the time ¢ in
the generic model (2), being operational, may rightfully be assumed large, provided the insurance
portfolio is large.

By Theorem 4.4, the lower premium intensity in Eq. (14) is

uag,t(cminy Haq ) - uag,t(EM7 /1‘041)
t

= Coin + (e, ) Zao ((Hay — Cmin)\/g/g(ﬂal));%zaz((ﬂal - EM)\/E/U(NM)) :

EM+%az,t(uaz,t(cminy,uoq)) =EM -

where 24, (-) is the function introduced in Theorem 4.4, 0 < Kay < Zao ((tay — EM)VE/0(11a,)) <
Kag/2y 0 < Kay < Zag ((fay — cmin)\/f/cr(,ual)) < Kayy2. For t — oo, the second summand in the
right hand side is tending to zero as O(t~'/2), and the lower premium intensity in Eq. (14) is close
tO Cmin. By the similar arguments, the upper premium intensity in Eq. (14) is close t0 ¢pax-

The main drawback of the control (14) with linearized premiums is that it satisfies no more the
(a1, ag)-solvency criterion: the upper bound for the annual probabilities of ruin,

sup ’l,bt(l_L(UJ), E(UJ), m) =1, (ﬂ(IU), E(IU), Hay )a

M oy
may exceed s for some w € RT.
THEOREM 2.4. One has
<EM + Topt(w), w> Uay t(EM, tioy),
Can,t (W, flay ) § = EM + Ty t(w), W = ta, t(EM, pa,), (15)
>EM + Topt(w), 0<w <ty (EM, pia,)-
PrROOF OF THEOREM 2.4. Introduce
L(w) = cap t(W, fay) — (EM + 7oy t(w)), w >0, (16)

and note that L(ua, t(EM, po,)) = 0. It is straightforward from cey t(Uas,t (EM, fay ), flay) = EM
and Ta, ¢ (Uay,t (EM, pia,)) = 0 (see Remark 2.2 and Eq. (13)). Theorem 4.4 and Theorem 4.5 yield

Liw) = 2 U(ﬂal)va2<0( w ) B U(Nal)%((ual —EM)vt ) w30, an

t B \/% ,ual)\/f \/% O—(/’Lal)

where 24, (+) and v,, (+) are the functions introduced in Theorems 4.4 and 4.5. Continuous function
L(w) is monotone decreasing since v, (z) > 1 for z > 0 by Theorem 4.5, and
1 w
L’(w):—[l—v; (—)} <0, w>0.
t o (o, )V

It completes the proof. O
Theorem 2.4 claims that linearization leads to overcharging the insureds when the past year

capital w exceeds the target value uq, (EM, pty,), and to undercharging otherwise. In this sense
linearization deteriorates the solvency properties of the control (12) formulated in Theorem 2.2.
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2.7. Zone-adaptive control with linearized premiums. Construct a control with linear
adaptive loading and free of the drawback of uncontrollable solvency. For the level 3 such that
0 < ag < B < 1/2, introduce the strip zone with the lower bound ug, = ta, ((EM, pla,) + 25,4
where z3 ¢ < 0 is a solution of the equation

Wi (= + s t(EM, 1)), EM = = j1a) = 3 (18)
with respect to z, and with a certain upper bound %g; such that
Ugry t(Cmaxcs oy ) < Ug p < Uay t(EM, pa, ) < Tt < Uay,t(Cmin, Hay)-
There are different ways to select the upper bound %g,. For example (recall that ¢min = fmin,

_ = _ 10— _
Cmax = Hay ), One may take Ug s = Uay,t(Cmin, lay )s OF > Ugt = Uag,t (EM, e, ).
Zone-adaptive annual control with linearized premiums is

Q_’Jﬁyh w > Q_’Jﬁyh

a(w) =\ W, Ug ¢ <w< Ug, ¢,
Ug,, 0<w<ugy,
B B (19)
ﬁﬁ,h w >1—L[37t7
c(w) = EM + Top s (w), ug, <w <Tpy,
By 0<w<ug,,
where _ EN
Uu — U
Tis, = EN _ Bt 042,;( nual),
w, —En - Moa et EM o) gz
=Bt t t

THEOREM 2.5. For 0 < ay < 1/2, 0 < ay < 8 < 1/2, the control (u(w), ¢(w)) is ultimately
equitable and satisfies the (aq, 3)-solvency criterion sharply.

PrOOF OF THEOREM 2.5. The proof of the first assertion is straightforward. It consists in
verification, similarly to the proof of Theorem 2.3, that the equation

ER(u(w), c(w), M) = tay 1 (EM, fia,)

holds true uniformly in w € RT. The second assertion needs no proof since

S<up 'lzbt(a(w)a /C\(UJ), m) = ’lzbt(a(w)a ,C\(UJ), /Lal) =0 (20)
M oy
uniformly in w € RT, by Eq. (18). O

THEOREM 2.6. For z € [a,b], where —uq, ((EM, pia,) < a <0 < b < EM -t, the probability in
the left hand side of Eq. (18) regarded as a function of z, is monotone decreasing, as z increases.

PROOF OF THEOREM 2.6. Bearing in mind (3), the proof is straightforward from
z
11bt (Z + u(lzyt(EMa ,uJal)? EM — Euual)

= P{ inf [(1=3) 2+ (EM = ta,)s = 0(pta, W, ] < —ttay ¢(EM, 1o},

0<s<t

10T hat selection is sensible because the premiums will not be larger than M (ie., g, = M in (19)), and no
capital exceeding one least necessary to guarantee the non-ruin with probability as is “frozen” as solvency reserve.
For Tg ; selected in that way, |zg | is the width of the strip zone. These reasons may be however unconvincing for a
decision maker with other preferences.
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since 1 — ? > 0 under the infimum sign. O

2.8. Strip width. For 0 < a; < 1/2, 0 < ap < # < 1/2, analyze analytically the existence,
the uniqueness and the analytical structure of the solution z3; < 0 of Eq. (18) with respect to z.

THEOREM 2.7. For 0 < a; < 1/2,0 < ay < B < 1/2, put™ 20,1 = 2oy (e, — EM)VE/0(j1a,)),
where zq,(+) s the function introduced in Theorem 4.4. The solution of Eq. (18) may be written as
2Bt = — [(/1’041 - EM)t + G—(Mlll)\/gxﬁyt] y

where xg, > 0 is the unique root of the equation
1= ®(z4,t) + exp{—22(zas.t — )} P22 — 24yt) = 5. (21)
REMARK 2.5. For any 0 < as < 3 < 1/2 and ¢t > 0 the solution of Eq. (21) is bounded from
above by a constant, 0 < g < Zay,t < Kay/2-

PROOF OF THEOREM 2.7. Bearing in mind Theorem 4.4, Theorem 2.6 and Eq. (30), it requires
just some direct algebra. (|

2.9. Asymptotic analysis and rules of thumb. The results of the previous sections may
be summarized as recommendations. It troubleshoots some problems discussed in Introduction and
yields certain “rules of thumb” when ¢ is large (see the first paragraph of Remark 2.4).

Even as p,, lies not too far from EM, the “fair” or “target” capital value happens to be of
order t rather than v/%, as it was (see Theorem 2.1 in [9]) in the case of completely known risk:

u(lz,t(EM7 :u(ll) = (:ual - EM)t + O—(:uoq)\/gzazyt
= (fta, — EM)t +O(V1), ast— ooc.

Recall that 0 < Ka, < Zayt = Zas ((Hay — EM)VE/0(1a,)) < Kay j2-

The magnitude of the target capital value is of a paramount importance; it is the benchmark
for the “long-run mean value”, or “appropriate risk-based provisions”. That magnitude appears
larger for the volatile scenario than for the complete knowledge case dramatically.

The upper bound of the strip zone in (19) is uq, ¢ (EM, o, ), while the lower bound is

Ugy = u(lzyt(EM7 /”Lal) + 28t
= O—(/Lal)\/g[za27t - xﬁyt] = Q(\/%)a as t — oo,
and the width of the strip zone is

|Z[57t| = (:u‘al - EM)t + O—(N‘&l)\/g‘xﬁvt'

By Remark 2.5, one has 0 < 25 < Zayt = 2as (Hay — EM)VE/0 (1)) < Kas)2-

Develop Remark 2.4. For 0 < oo < 1/2 and for the capital w; such that w;, — a(ual)\/f — 00,
as t — oo, the linearized premium rate EM + 7, ;(w;) differs from the original premium rate
Couy t (Wit ) by the terms of order t—1/2. Deterioration of the original premium rate is therefore
rather small in magnitude. By Lemma 4.1, for the function v, (+) introduced in Theorem 4.5, one
has vq,(2) = 2 — Kay, +0(1), as z — +00. Eq. (17) yields
i (Hay)

Vit
Bearing in mind that 0 < Ka, < Zagt = Zao ((Hay — EM)\/E/J(,ual)) < Kay /2, the right hand side
of this equation is O(t~/?), as t — oo. It is also noteworthy that for 0 < ap < < 1/2

o « — —
0 < Cay,t(We, fay) — cat(We, oy ) = (\%1) (Kay — Kg) +0(t 1/2), as t — oo.

L(w) = cay (Wi, pro,) — (EM + fazyt(wt)) = (Zag,t — Ka) +5(t_1/2), as t — oo.

HMRecall that Koy 2 = Zaz(0) 2 2ag (V) 2 2ag (+00) = Kay 2 0 for v > 0.
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3. Multi-period model of risk under volatile scenario

Recall (see [7]-[9]) that the rigorous definition of a multi-period controlled risk model over the
elementary state space (2, F) with the realizations matching the diagram (1) implies the definition
of a controlled random sequence. In the particular case of the

(i) annual mechanisms of insurance (2),
(ii) volatile scenario of nature introduced in Introduction,
(iii) adaptive controls synthesized in Section 2

the “insurer x nature” state space W and the control space U are R x {0,1} x M and RT x R
respectively.

It is noteworthy that since all probability mechanisms of insurance 7y, k = 1,2,..., are as-
sumed!? to comply with the same generic model (2), we deal with the homogeneous multi-period
model. It matches well the homogeneous volatile scenario of nature set forth in Definition 1.1.

REMARK 3.1. Discussing long-time average premium rate and long-run mean value of the losses,
sensible is to endow the probability mechanisms of insurance 7 with discount factors. It will be
done elsewhere, since our concern in this paper is the homogeneous case. Bearing in mind the first
paragraph of Remark 2.4, emphasize it that “long run” refers to the number of insurance years
rather than to operational lengths of the separate years.

The first component of the state vector oy = (m,il> , m,<f>, t‘o,f”) € W is the kth year-end capital
of the company. The second component indicates whether ruin has occurred, or not, in the kth
year. The third component is the outcome of the next-year claims intensity which is the choice of
the nature. The two components of the control vector ug_; = (u,ili 1 u,fi 1) € U are the starting
capital and the premium intensity in (2), respectively.

Under certain mild regularity conditions, the controlled random sequence (Wi, Myy1,Ux), k =
0,1,..., assuming values in the product space (W x U, W® U) is rigorously defined (see, e.g., § 1 of
Chapter 1 in [6]) by means of w = {m, £k =1,2,...} and v = {y%, k=0,1,...} on a probability
space (Q,F,P™).

It is noteworthy that we deal in this paper with Markov (see, e.g., Section 3 of [9] for definitions
and particulars) annual probability mechanisms of insurance 7, and pure Markov strategies'® v =
{7V, k = 0,1,...}. Therefore, the controlled random sequence (Wj,, My.1,Uy), k = 0,1,..., may
be reduced to a homogeneous Markov chain on the state space W with the transition probability

P(wg_1;dwg) = Pm@l(mlfil;dm,i” x dwo}?) G(dw),

where

Py (o) idrog” x {0}) = P{Ry(yk—1(0p—1)) € dm;i”,OiggtRs(Vk—l(mk—l)) > 0| My =m},

oG L (22)
Py (g sdrog” x {1}) = P{Ry(yk—1(r04_1)) € droj, >,Oggf<tRs(%—1(mk—1)) < 0| My =m}

and c.d.f. G is the common distribution of the independent random variables My, k =1,2,....

L2For simplicity’s sake. Non-homogeneity, i.e., the case of the annual mechanisms of insurance and the annual
controls different within n-years time horizon is a straightforward but a very useful generalization. The unique
technical difficulty, though easy to overcome, consists in the non-homogeneous Markov chains which appear in
Section 3. An other self-suggesting generalization is the non-homogeneous volatile scenario of nature, i.e., My,
k=1,2,..., independent, but not identically distributed.

130r Yn = {7V, k=0,1,...,n — 1}, to introduce a more specific notation for the n-years horizon strategy.
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REMARK 3.2. In the premises of the diffusion model (2), one can easily write the explicit
expression for

Po(tof ;o x {0,1}) = P{R: (301 (wi_1)) € drof? | My = m}
= P{'Yl(clll(mk—l) + ')/liz’—)l(mk—l)t — (mt +o(m)W,) € dm;cn .

Theorem 4.3 provides the explicit expression for (22) which yields the explicit expression for the
transition probability P(tox—_1;drog).

We continue to write P™{.} for the Markov chain with transition probability P and denote
by E™ the mean with respect to that measure. For brevity, we denote by PJY{-} the conditional
distribution P™{- | M = m}, where M = {M},, k=1,2,...} € M = M is the sequence of i.i.d.
random variables and m is its realization. We denote by E the respective conditional expectation.
Evidently, P7Y{-} corresponds to the case when the trajectory m of the scenario of nature is fixed.

3.1. Solvency. The following results are fundamental.

THEOREM 3.1. In the homogeneous multi-period Poisson—FExponential model with starting cap-
ital w € RT, for the homogeneous pure Markov strategqy v generated by the annual control (12),

sup Pm/{ first ruin in year k, } <ardas, k=12,..., (23)
we + as starting capital is w
and for the homogeneous pure Markov strategy v generated by the zone-adaptive annual control with
linearized premiums (19),
sup Pm{ first ruin in year k, } <o +B8, k=1,2.... (24)
we + as starting capital is w
PrOOF OF THEOREM 3.1. The proof of (23) is immediate from

va{ first ruin in year k, } :/ G(dmi) P, (w; dmi” x {0}) ...
as starting capital is w xM

. / G(dmk—l)Pﬂk—l(m;cllQ;dm;clil X {0})/ G(dmk)Pmk(m;clil; R x {1}),
xM xM

sup /M G(dmy) P, (0,2 ;R x {1}) < sup apy(a(ro;” ), e(w,2 ), oy ) + P{Mi > pia, }

(1) 1
w1 € PSSR

and Theorem 2.2. The proof of (24) is quite analogous and applies Theorem 2.5. O

COROLLARY 3.1. In the homogeneous multi-period Poisson—Exponential model with starting
capital w € RT, for the homogeneous pure Markov strategy - generated by the annual control (12),

n
sup P"’“’{ ruin within n years, } < Z sup P‘l\‘n’{ first ruin in year k, } < nlon + o)
we + as starting capital is w o we T+ as starting capital is w

for n = 1,2,.... For the homogeneous pure Markov strategy =~ generated by the zone-adaptive
annual control with linearized premiums (19), the above inequality holds true with n(a; + )
instead of n(ay + as2).
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3.2. Equity. By Theorem 2.3, in the homogeneous multi-period Poisson—Exponential model
with starting capital w € R™, the homogeneous pure Markov strategy « generated by the annual
control (14) with linearized premiums is equitable in the sense that uniformly in w € Rt and for
k=1,2,...,

E [E"'”’ (capltal at the end of year k, >] = Uay 1 (EM, fta, ). (25)
as starting capital is w 7
That strategy directs the risk reserve at the “target” value uq, ¢(EM, tto,) and makes the risk
reserver process balanced around it in a long-time perspective.

The same property holds true for the homogeneous pure Markov strategy ~ generated by the

zone-adaptive annual control with linearized premiums (19).

THEOREM 3.2. For the homogeneous pure Markov strateqy v generated by the zone-adaptive
annual control with linearized premiums (19), Eq. (25) holds true.

PrROOF OF THEOREM 3.2. Note first that for m = (mqy,ma,...)

E™Y (capltal at the end of year k:> /Pm (w; dw{? x {0,1})
as starting capital is w !

./Pmk L dott | x {0,1})/m§§> P, (0 sdwi? x {0,1}). (26)

Bearing in mind Remark 3.2 and Eq. (19), one has
/m}j) P, () 5 dwol” x {0,1}) = / i P{u(w” ) + el )t — (myt + o (my)W,) € droy”}

(EM*mk)t+u0¢2,t(EM’ /I’Otl)v ml<c1>1 >1—L[3 s
= (EM*mk)t+ua27t(EM7 ,ulll)a u[ﬁt mk 1 ﬂﬁvh
(EM — my)t + Uy 1 (EM, f1a,), 0<mo” < Ug -

It is noteworthy that the right hand side is independent on m;clil' Put it in (26). The proof
completes by taking expectation over the outcomes m of the scenario of nature. O

REMARK 3.3. The homogeneous pure Markov strategy ~ generated by the zone-adaptive annual
control with linearized premiums (19) is both solvent and equitable.

3.3. Dynamic solvency provisions. Provisions similar to equalization reserves face large
deficit at the end of the insurance year. Commonly, these provisions are invested, but in this paper
we disregard the investment aspects; one may see that the price which we do not wish to pay for it
is more cumbersome transition probabilities.

For zone-adaptive control with Tg; = ua, :(EM, ta, ) and with linearized premiums (19) intro-
duce the variable

0, Ug, S W S UBt,

At(’(U) = w — ’l_l/[jyt, w > ’l_l/[jyt,

—(ug, —w), 0<w<ug,.
called annual excess (of either sign) of capital. The mean aggregate excess (of either sign) of capital
within n years for the strategy ~y, or the mean aggregate dynamic solvency provisions, is

n n
E[Ex Y- A = SoE[Ema v
k=1 k=1

The following theorem demonstrates that application of the homogeneous pure Markov strategy
~ generated by the zone-adaptive annual control with linearized premiums (19) increases the mean
aggregate dynamic solvency provisions.
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THEOREM 3.3. For the homogeneous pure Markov strateqy ~ generated by the zone-adaptive
annual control with linearized premiums (19), uniformly in w € RT and fork=1,2,...,

E[E"mmt(w,g“)] > 0.
PROOF OF THEOREM 3.3. With the starting capital w € RT and m = (mq,mao,...),

EXY A (W) :/Pml(w; dro{" x {O,l}).../Pmk (10l dw” | x {0,1})
{0 =) P (w2 o ¢ (0.1)) o
{m< >>“B,t}

/{m(l>< }(uﬁytim;gl))Pﬂ’Lk(mk 1,d1’0§; X {0 1})}
k Upg ¢

Bearing in mind Remark 3.2, apply the explicit expression yielded by Theorem 2.1 of [7] to the
integrand Py, (r0f” ;drof x {0,1}) = P{u(ro} ) + (o) | )t — (myt + o (my)W,) € drof’ } in (27).
Direct integration completes the proof. [l

4. Auxiliary results

4.1. Mill’s ratio and Brownian motion. The most well-known results (see, e.g., [10]) for
Mill’s ratio

1-— <I)(x) 2 > _ 42
Mx:—:em/Q/ e V/2dt, z€eR, 28
() @) ) (28)
are
d d? 9
M(@) >0, —M(@) =2M(z) ~1<0, —5Mz) =M(z)1+2")-2>0, z€R, (29
so that M(z) is concave and decreasing from oo to 0, as x increases from —oo to co. Since
d d?
o — (zM(z)) = @M(x) >0, x€R,

the function #M(z) is increasing from —oo to 1, as x increases from —oo to +o0.
For reader’s convenience, we collect some formulae for real-valued Brownian motion with linear
drift, 0t + oWy, t > 0, where 8 € R, o > 0.

THEOREM 4.1. For x > 0, one has P{ supyc,c, Ws > z} = 2P{W,; > z}.

THEOREM 4.2. Forx >0 and § € R, 0 > 0, one has

P{ sup (s +oW,) <z} = @(mg\/?t) - exp{29x/02}®<i\/gat>.

0<s<t

THEOREM 4.3. Forx >0 and 8 € R, o > 0, one has
P{0t+ oW, € dy, sup (fs+oW,) <z} = P{0t+ oW, € dy}

0<s<t
— P{6t+ oW, € dy, sup (6s+ oW,) > x},
0<s<t
1
where P{Ot + oW, € dy} = oot exp{—(y — 9t)2/202t} dy and
P{0t+ oW, € dy, sup (0s +oW,) >z} = exp{ 20yt — 0*t* — (ly — x| + x)?)/20%t} dy.

0<s<t

These three results are well known. Theorem 4.1 is formula 1.1.4 in Part II, Chapter 1 of [3].
For Theorem 4.2 see formula 1.1.4 in Part II, Chapter 2 of [3]. For Theorem 4.3 see formulae 1.0.6
and 1.1.8 in Part II, Chapter 2 of [3].
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4.2. Level values. Bearing in mind the level values introduced in Definition 2.4, address the
solution uq ¢ (c,m) of the equation
’lpbt(u; ) m) =

with respect to u and the solution ¢, ¢(u,m) of that equation with respect to c¢. In the diffusion
framework this problem may be solved analytically in a comprehensive way. The generalization of
the results of the present paper would require mostly the alternative methods of such analysis, e.g.
numerical evaluation or more complicated analytical technique.

THEOREM 4.4. For 0 < a < 1/2, the a-level initial capital corresponding to the claim intensity
m is

o (m)Vi [M Ha((m*_@ﬁ )], m>e

Ug s (c,m) = a(m) a(m)

ol (I, mee

where z,,(v) is continuous and monotone increasing, as v increases from —oo to 0, with
0 = 24(—00) < 2a(v) < 24(0) = Kay2,
and monotone decreasing, as v increases from 0 to +oo, with
Kaj2 = 2a(0) 2 24(v) = 2a(+00) = Kq > 0.

REMARK 4.1. One can supplement Theorem 4.4 by the observation that wue.(c, m), which
depends on m and c¢ only through the difference m — ¢, is a monotone function of this difference. To
be more specific, if m — ¢ increases from —oo to 0, the capital uq ¢(c,m) = uq (M — ¢) is monotone
increasing from 0 to o(m)v/tkq 2. If m — ¢ increases from 0 to +oo, the capital uq(m — c) is
monotone increasing from o(m)v/t kq /2 to +oo.

Theorem 4.4 is illustrated by the following numerical calculations.

TABLE 4.1. Values of u, ¢(m — ¢) for t =100, o(m) = 1.

- =0 — =001 — =002 — =003 — =004
=03 || 103643 10 6166 10 8823 11 1841 11 5440
=01 || 164485 16 8379 17 2536 17 7159 18 2422
=005 195996 20 0331 20 4988 21 0161 21 6000

- =0 — =-001 — =-002 — =-003 — =-004
=03 || 103643 97120 9 0895 8 4983 7 9396
=01 || 164485 15 6601 14 8907 14 1422 13 4161
=005 195996 18 7682 17 9517 17 1515 16 3691

THEOREM 4.5. For u > 0, the a-level premium intensity corresponding to the claim intensity

m 1S

Cat(u,m)=m—

o(m)

Vi va<0(

i)

where v (z), z > 0, is continuous, convex and monotone increasing from —oo to 0, as z increases
from 0 to Kaj2, 2670 Gt 2 = Kq /2 and monotone increasing from 0 to oo, as z increases from Ka/2

to co. Furthermore, v

' (2) > 1 for z > 0.
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PROOF OF THEOREM 4.4. Applying Theorem 4.2, one has

P (u,e,m) =P{ inf [u+ (c—m)s—o(m)W,] <0} =P{ sup [(m —c)s + o(m)W,] > u}

0<s<t 0<s<t

_ovi
1o )

+ exp {2

(30)

(m— )Vt (m— o)Vt
PV t}@q’(g(n?m* i °)

Consider the cases m > ¢ and m < c separately. In the former case, bearing in mind (30),
rewrite Eq. (8) with respect to u as

i (m — )Vt (mfc)\/f>

Fl(a(m)\/% T om)  em) )T &1

where Fy(z,v) =1 — ®(z) + exp{2v[v + 2] }(1 — ®(2v + 2)). The solution z = z,(v) of the equation
Fi(z,v)=a, v>=0, 0<a<1/2,

with respect to z exists, is unique, for « fixed is monotone decreasing, as v increases from 0 to 400,

and is bounded, ko 2 = 24(0) = 24(v) = 2a(+00) = ka = 0. For a fixed, v 4 z,(v) is monotone

increasing, as v increases from 0 to +oo. Moreover, for v fixed, z,(v) is monotone decreasing, as «
increases, and 0o = zp(v) = z,(v) = 2z1(v) = 0.

0.5 1 1.5 2 2.5 3

FIGURE 1. Three graphs: Fi(z,0) > Fi(z,1) > Fi(2,2) with z > 0. It is notewor-
thy that F(0,4+00) =1/2.

To prove monotonicity of z,(v), apply the implicit function derivative theorem and note that'*

d d

Ty ralv) = *(@H(Z,’u)) (dilel(z,v)>_l _ 2oM2u+2) -1

= — <0
z2=2zq(v) ’UM(Q'U + Z) — 1 lz=24(v)

MHere M(z), z € , is Mill’s ratio, see Eq. (28).
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since for z,v > 0

diiFl(z, v) = exp{2v[v + z|}4v(1 — ®(2v + z)) — 2exp{2v[v + 2|} p(2v + 2)
= 2exp{2v[v + 2]}$(2v + 2) [20M(2v + 2) — 1] <0,

dilel(z, v) = —@(2) + exp{2v[v + 2]}2v(1 — P(2v + 2)) — exp{2v[v + 2| }p(2v + 2)
= 2exp{2v[v + 2]}$(2v + 2) [VM(2v + 2) — 1] < 0.

The inequalities 20M(2v+2) —1 < 2v/(2v+2) —1 < 0 and VM(2v+2)—1 < v/(2v+2)—1< —1/2
follow from Eq. (29). Furthermore,

_ uM(2v+2) S
z2=2q(v) N ’UM(Q’U + Z) — 1lz=z24(v) -

d d 20M(2v+2) — 1
-5 o == e =1-
dv(v +zalv)) =1+ dv” ) vMQ2v+2z) -1

)

which yields monotonicity of v 4 z,(v). Bearing in mind that Fj(z,00) =1 — ®(2) and Fi(z,0) =
2(1 — ®(z)), the analysis in the case m > ¢ is completed.
Address the case m < ¢. Bearing in mind (30), rewrite Eq. (8) with respect to u as

F2<a(u (mic)\@:a’ (32)

Vi o(m)
where!® Fy(z,v) =1 — ®(2 — v) + exp{22v}(1 — ®(z + v)). The solution z = z,(v) of the equation
Fr(z,v)=a, v<0, 0<a<]/2,

with respect to z exists, is unique, for « fixed is monotone increasing, as v increases from —oo to 0,
and is bounded, 0 = z,(—00) < 24(v) < 24(0) = Kq /2. For v fixed, 2,(v) is monotone decreasing,
as « increases, and 0o = 29(v) = z4(v) = 21 (v) = 0.

1

FIGURE 2. Three graphs: Fz(z,0) > Fy(z, —1) > F3(z,—2) with z > 0.

To prove monotonicity of z,(v), apply the implicit function derivative theorem and note that

d d d —1 2M(z +v)
P = —_—- >
dvza(v) (dvF2(z’v)> (dz F2(2’0)> z=2a(v) VM(z + ) = 1le=za(e) ~ ’

150ne may put Fa(z,v) = Fy(z —v,v) for v € , though our concern is Fy(z,v) for v > 0 and Fy(z,v) for v < 0.
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since for z > 0 and v <0
d
d—FQ(z, v) = ¢(z —v) + exp{220}22(1 — (2 + v)) — exp{22zv}P(z + v)
v
= exp{22v}2z(1 — (2 +v)) = 0,

diZFQ(z, v) = —@(z — v) + exp{2zv}2v(1 — D(z + v)) — exp{2zv}¢(z + v)
= exp{220v}20(1 — ®(z 4+ v)) — 2exp{2zv}d(z + v)
= 2exp{2zv}¢(z + v)[vM(z + v) — 1] < 0.
The inequality vM(z +v) — 1 < vM(v) — 1 < 0 is evident from Eq. (29). Bear also in mind that
Fy(2,0) = 2(1 — ®(2)). O

PROOF OF THEOREM 4.5. Bearing in mind (30), rewrite Eq. (8) with respect to ¢ as

— t
B(——, (m C)\/> —a. (33)
)i olm)
The solution v = v, (2) of the equation
Fy(z,v)=a, 220, 0<a<1/2, (34)

with respect to v exists, is unique and has the following properties. For « fixed, v, (2), z = 0, is
continuous, convex and monotone increasing from —oo to 0, as z increases from 0 to kg /2, zero
at 2 = Kq/2 and monotone increasing from 0 to oo, as z increases from kK, /2 to co. Furthermore,
vl (z) > 1 for z > 0.

To prove monotonicity of v,(z), apply the implicit function derivative theorem and note that

d d d -1 vM(z+v) —1

L va(2) = — (= Fy(z,0)) (= Fa (2, S S . B 1

dZU (Z) (dZ 2(2’ ,U)> (d’U 2(2’ U)) v=2q(2) ZM(Z+U) v=vq(2) -
since (see Eq. (29)) for z > 0 and v € R

vM(z+v) —1 1—(z+v)M(z+v)
7 1= > 0.
2M(z +v) 2M(z + v)

The proof is completed. O

LEMMA 4.1. The solution of Eq. (34) with respect to v is such that
Va(2) = 2 — Ko +0(1), as z — +o0.
Proor or LEMMA 4.1. Note that
exp{2zv}(1 — ®(z 4 v)) = exp{2zv}P(z + V)M(z 4+ v) = ¢(z — v)M(z + v)

and rewrite Eq. (34) as
1-®(z—v)=a—¢(z—v)M(z +v).
By Theorem 4.5, v, (2) — 400, as z — +o00. Since M(z) — 0, as x — 400, and ¢(z) is bounded,

the proof is completed. O
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