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Abstract

A dynamic control model of the insurance process over n successive accounting years

is considered. The analytical inference about the model requires investigations of a class

of kernels describing yearly insurance mechanism.

Aiming the kernels, the approximations for the distribution of the risk reserve at time

t conditional on ruin within time t in the Andersen’s collective risk model are obtained.

Corrected approximations for the mean and certain numerical results are also presented.
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1. A dynamic control model

In the paper [3] Harald Cramér responded to certain criticism on the Lundberg

theory. He wrote: ”In view of certain misconceptions that have appeared it is, however,

necessary to point out that Lundberg repeatedly emphasizes the practical importance of

some arrangement which automatically prevents the risk reserve from growing unduly.

This point is, in fact, extensively discussed in the papers of 1909, 1919 and 1926–1928.

One possible arrangement proposed to this end is to work with a security factor τ = τ(x)

which is a decreasing function of the risk reserve R(t) = x. Another possibility is to

dispose, at predetermined epochs, of part of the risk reserve for bonus distribution. By

either method, the growth of the risk reserve may be efficiently controlled.”

The subject of this paper is the latter arrangement, for which we introduce a class

of models of the insurance process over n successive accounting years (”predetermined

epochs” as in the citation above) which diagram is

w0
q0−→ u0

g1−→ w1︸ ︷︷ ︸
1-st year

· · · gk−1−→ wk−1
qk−1−→ uk−1

gk−→ wk︸ ︷︷ ︸
k-th year

· · · .

In words, at the end of each (k − 1)-th year, k = 1, 2, . . . , at time t†k−1, the aggregate

state of the insurer wk−1 is observed; at the beginning of the k-th year, at time t∗k, the

control variable uk−1 is picked up according to the rule qk−1. It actuates the probabilistic

mechanism of insurance denoted by gk and produces the aggregate state variable wk

describing the insurer position at the end of the k-th insurance year, at time t†k, and so

on. The models of this type, mainly linear, were considered by a range of authors (see

e.g., [5], [12] and references therein).

In our particular model the yearly account of the company is supposed to consist of

two items: (i) the size of the risk reserve at the end of the insurance year, and (ii) the

value indicating a fall of the risk reserve below a level z > 0. Thus, the aggregate state

variable is a two-dimensional random vector. The risk reserve at the end of the insurance

year is its first component, the indicator of the event above is the second one. Let the

control qk−1 consists in adjustment of the capital at the beginning of each insurance year

t∗k, k = 1, 2, . . . , n. Increase may be interpreted e.g., as dividend payment (bonus as in

the citation above), decrease — as external capital borrowing.
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The aggregate variables Wk range over the state space (W,W) which is Cartesian

product of the real line R and of the two-point space {0, 1}, endowed with a σ-field, and

the control space (U,U) is the positive half-line R+, endowed with a σ-field.

It comes natural to assume that the first component of Wk = (W1,k,W2,k) is governed

by the linear equation

W1,k = Uk−1 + ξk, (1)

where Uk−1 = qk−1(Wk−1) ∈ U. For simplicity we bound ourselves by nonrandomized

and Markovian controls qk−1 : R× {0, 1} = W → U = R+ and take

ξk = I(tk)− S(tk), (2)

where tk = t†k − t∗k. Adopting the Lundberg collective approach and switching to the

operational time, the k-th year total premium income is I(tk) = cktk, with the premium

rate ck constant over this year, and the k-th year total claims outcome is S(tk) =
∑N(tk)

i=1 Yi (see definition of N(t) and Yi in the next section), so that W1,k = R(tk), where

R(t) = Uk−1 + ckt− S(t), 0 < t 6 tk. (3)

For the second component of Wk = (W1,k, W2,k), introduce M(t) = inf0<s6t R(s),

where 0 < t 6 tk, and W2,k = 1{M(tk)<z}.

The probabilistic mechanism of insurance on the k-th successive year is defined by

gk(dw1,k × 0 | uk−1) = P
{
R(tk) ∈ dw1,k,M(tk) > z | Uk−1 = uk−1

}
,

gk(dw1,k × 1 | uk−1) = P
{
R(tk) ∈ dw1,k,M(tk) < z | Uk−1 = uk−1

}
.

(4)

Addressing to the control qk−1, any fall of the insurer’s capital below a certain level

z might be declared a worrying event indicating aggravation of the financial solvency

situation. An oversimplified, but sensible example expressing this worry is the control

qk−1(w1,k−1 × 1) = (1− α)w1,k−11{w1,k−1>y}

+ w1,k−11{z<w1,k−1<y} + z1{w1,k−16z},

qk−1(w1,k−1 × 0) = (1− α)w1,k−1,

(5)

where 0 < z < y and 0 6 α 6 1. According to (5), in the ”worrying” situation (i.e.,

W2,k−1 = 1) the (k − 1)-th year-end dividends equal to α-th fraction of the (k − 1)-th

year-end capital W1,k−1 are paid out if and only if this capital exceeds the level y; if the

year-end capital is less than z, borrowing is applied to match this level. In the ”regular”
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case (i.e., W2,k−1 = 0, which entails W1,k−1 > z) the dividends are payed out regardless

the capital size.

For a fixed initial distribution g0(w0) = P{W0 ∈ dw0} the functions (4) and the

control (5) specify on the probability space (Ω,F ,P) a random sequence (Wk, Uk), k =

0, 1, . . . , which determines the dynamic control insurance model. Combine (5) and (4):

for wk−1, wk ∈ W = R× {0, 1} we obtain

pk(dwk | wk−1) = gk(dwk | qk−1(wk−1)), (6)

and for the strategy γn = {qi(·), i = 0, 1, . . . , n− 1}

Pγ{W0 ∈ A0, . . . ,Wn ∈ An} =

∫

A0

p0(dw0)

∫

A1

p1(dw1 | w0) . . .

∫

An

pn(dwn | wn−1), (7)

where Ak ∈ W , k = 0, 1, . . . , n. Furthermore, for an integrable cost functional F

S(F ; γn) = EγF (W0, . . . ,Wn) =

∫

W

p0(dw0) . . .

∫

W

pn(dwn | wn−1)F (w0, . . . , wn). (8)

In particular, the choice F (w0, . . . , wn) = (1 − α)
∑n

i=0(1{w2,i=1,w1,i>y} + 1{w2,i=0})w1,i

yields the total dividends, and the choice F (w0, . . . , wn) =
∑n

i=0(z−w1,i)1{w1,i6z} yields

the total borrowing up to the n-th year under the control (5). Note that inflation and

interests are easy to incorporate into these year-by-year sums.

It is a customary practice to approach the problem of optimization of (8) over a class

of admissible strategies F,

S(F ) = min
γn∈F

S(F ; γn), (9)

following the lines e.g., of [9], [10] though according to comment of S. Benjamin on the

paper by K.Borch [2], there is a danger of not running anything well aiming at ”the

best”, with too much ”optimizing”.

We are not interested here in asymptotics, as n increases, rather in analytical calcu-

lation of (7) and (8) given a strategy γn, as n is fixed. Considerable technical difficulty

of such problems together with their practical importance called forth a wide application

of simulation analysis (see [4]). However, according to [11], ”as a compromise between

simulation and analytical methods it may be advisable to perform some simplified cal-

culations analytically first”. Bearing in mind this interest, we consider further on some

analytical results for the kernels (4), where uk−1 > (1− α)z, as z is sufficiently large.

We formulate these results in the standard framework of the ruin theory, investigating

correlation between ruin within time t and the insurer’s surplus at time t in Andersen’s
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model with light tailed claims and positive safety loading. Incidentally, we generalize

the classical Cramér–Lundberg approximation (see e.g., [1]) for the finite time ruin

probability ψ(t, u),

lim
u→∞

sup
t>0

∣∣∣e{uψ(t, u)− CΦ(m1u,D2
1u)(t)

∣∣∣ = 0, as u →∞. (10)

2. Further notation and assumptions

Being in the framework of Andersen’s risk model, recall that it comes from the i.i.d.

random vectors {(Yi, Ti)}i>1, where Ti are the interclaim times and Yi are the amounts of

claims, with the probability distribution function (p.d.f.) BY,T (y, t) = P{Y1 6 y, T1 6 t}
and the characteristic function (ch.f.) βY,T (t1, t2) = E exp(it1Y1 + it2T1). These random

vectors generate the risk reserve process

Ru(t) = u + ct−
N(t)∑
i=1

Yi, t > 0, (11)

where u > 0 is the initial risk reserve, c > 0 is the risk premium rate, and N(t) is the

number of claims up to time t, i.e. the largest n for which
∑n

i=1 Ti 6 t (we put N(t) = 0

if T1 > t). Consider

c = (1 + τ)EY1/ET1, (12)

with τ called relative safety loading and assume τ > 0. Evidently, the equality (12) is

equivalent to τ = cET1/EY1 − 1.

Ruin occurs at time s as Ru(s) < 0 and the probability that ruin occurs within the

time interval (0, t] is ψ(t, u) = P[inf0<s6t Ru(s) < 0].

For i = 1, 2, . . . introduce i.i.d. random variables Xi = Yi − cTi and put Sn =
∑n

i=1 Xi, Vn =
∑n

i=1 Yi. For the p.d.f. B(x, y) = P{X1 6 x, T1 6 y} and for a positive

solution κ of the Lundberg equation,

E exp(κX1) = 1, (13)

introduce an associate p.d.f. by B(dx, dy) = e{xB(dx, dy). For notational convenience,

introduce the associated sequence {(X i, T i)}i>1 of i.i.d. random vectors having the p.d.f.

B(x, y), and Sn =
∑n

i=1 X i, Un =
∑n

i=1 T i. Put

νi,j = EY i
1 T j

1 , νi,j = EX
i

1T
j

1, i, j = 0, 1 . . . . (14)
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Introduce

m1 = ν0,1/ν1,0, m2 = τν1,0/ν0,1,

D2
1 = ((ν0,1)2ν2,0 − 2ν1,0ν0,1ν1,1 + (ν1,0)2ν0,2)/(ν1,0)3,

D2
2 = ((ν0,1)2ν2,0 − 2ν1,0ν0,1ν1,1 + (ν1,0)2ν0,2)/(ν0,1)3,

C =
1

κν1,0 exp

(
−

∞∑
n=1

1

n

[
P(Sn > 0) + P(Sn 6 0)

]
)

,

(15)

and for the Normal distribution and density functions Φ(µ,σ2)(z) and ϕ(µ,σ2)(z) introduce

g(z) = z + ϕ(0,1)(z)Φ−1
(0,1)(z). (16)

Using the Mill’s relation, we have g(z) = z(1 + o(1)), as z → ∞, and using the ap-

proximation Φ(0,1)(z) = 1
2

+ ϕ(0,1)(z)(z + 1
3
z3 + . . . ), we have g(z) approximated by

(1− 4ϕ2
(0,1)(z))z + 2ϕ(0,1)(z) for z in a neighborhood of zero.

3. Approximations

Introduce

ψ(w, z; t, u) = P
[
Ru(t) 6 w, inf

0<s6t
Ru(s) < z

]
, ψ(w; t, u) = ψ(w, 0; t, u). (17)

Evidently, ψ(+∞; t, u) = ψ(t, u), for c constant ψ(w, z; t, u) = ψ(w−z; t, u−z), and the

kernel ψ(w, z; t, u) is closely related with (4).

Theorem 1. Suppose that in the collective risk model with τ > 0 the characteristic

function βY,T (t1, t2) is absolutely integrable and 0 < D1, D2 < ∞. Then, as u →∞,

lim
u→∞

sup
t>0,w∈R

∣∣∣∣e{uψ(w; t, u)− C

∫ t

0

ϕ(m1u,D2
1u)(z)Φ(m2[t−z],D2

2 [t−z])(w) dz

∣∣∣∣ = 0. (18)

The approximation (10) is a particular case of (18).

Theorem 2. Under the conditions of Theorem 1

E
[
Ru(t) | inf

0<s6t
Ru(s) < 0

]
= m2D1

√
ug

(
t−m1u

D1

√
u

)
(1 + o(1)),

D
[
Ru(t) | inf

0<s6t
Ru(s) < 0

]
= D2

2D1

√
ug

(
t−m1u

D1

√
u

)
(1 + o(1)),

as u →∞.
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remark 1. In the particular case of the Poisson/Exponential model the approxima-

tions are easy to express in terms of intensities. Assume that the (i.i.d.) amounts of

claims {Yi}i>1 and the (i.i.d.) inter-occurrence times {Ti}i>1 are mutually independent

and exponential with parameters µ > 0 and λ > 0 respectively. Then

c = λ(1 + τ)/µ (19)

and (compare to e.g., (2.5)–(2.7) in [8])

κ = µτ/(1 + τ), m1 = µ/(λτ(1 + τ)), m2 = τλ/µ,

D2
1 = 2µ/(λ2τ 3), D2

2 = 2λ/µ2, C = 1/(1 + τ).
(20)

In particular, the approximation for the expectation E
[
Ru(t) | inf0<s6t Ru(s) < 0

]
at

the time point t = m1u is
√

2ug(0) /
√

µτ. (21)

4. Corrected approximation and a numerical example for the mean

Denote the ladder index N = inf{n : Sn > 0}, the ladder height H = SN and the

ladder time point T = UN and put W = E(T EH−HET ). Introduce

θ1 =
EH

1− Ee−{H
− 1

κ
, θ2 =

ET
1− Ee−{H

− ET e−{H

1− Ee−{H
,

θ3 =
1

κ
− EHe−{H

1− Ee−{H
, k1 = EW2, k2 =

EW3

6k1

,

k3 = ETDH− EHCov(H, T ).

(22)

The following approximation elaborates the first relation of Theorem 2.

Theorem 3. Suppose that in the collective risk model with τ > 0 the characteristic

function βY,T (t1, t2) is absolutely integrable, 0 < D1, D2 < ∞ and ET 3
1 < ∞. Suppose

that the premium rate is c as in (12). Then, as u →∞,

sup
t>0

∣∣∣E
[
Ru(t) | inf

0<s6t
Ru(s) < 0

]
ψ(t, u)

− ν1,0

(
1− ν0,2

2(ν0,1)2

)
ψ(t, u)

− Ce−{uτ
ν1,0

ν0,1
D1

√
u

[(
t−m1u

D1

√
u

)
Φ(0,1)

(
t−m1u

D1

√
u

)
+ ϕ(0,1)

(
t−m1u

D1

√
u

)]

− Ce−{uτ
ν1,0

ν0,1
Φ(0,1)

(
t−m1u

D1

√
u

)(
t−m1u

D1

√
u

)(
k3

2(EH)2
+ 3

k2

EH − θ1
ET
EH + θ2

)
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− Ce−{uτ
ν1,0

ν0,1
Φ(0,1)

(
t−m1u

D1

√
u

) (
θ2 − θ1

ET
EH − k3

(EH)2
− θ3

ET1

τEY1

)

− Ce−{uτ
ν1,0

ν0,1
ϕ(0,1)

(
t−m1u

D1

√
u

)(
t−m1u

D1

√
u

)(
θ1

ET
EH − θ2 − 2

k2

EH
) ∣∣∣ = o(e−{u).

Numerical example. Assume that the (i.i.d.) amounts of claims {Yi}i>1 and the

(i.i.d.) inter-occurrence times {Ti}i>1 are mutually independent and exponential with

parameters µ > 0 and λ > 0 respectively.

Lengthy but straightforward calculations similar to those described in Theorem 2

and Lemma 1 of [6] (see also pp. 890–891 and p. 907 of [8]) applied to Theorem 3 yield

the following approximation for E
[
Ru(t) | inf0<s6t Ru(s) < 0

]
ψ(t, u) at the time point

t = m1u with m1 from (20):

Ce−{uΦ(0,1)(0)

(√
2u√
µτ

g(0)− 3 + 3τ + τ 2

µ(1 + τ)

)
. (23)

The approximation at the time point t = m1u for ψ(t, u),

Ce−{uΦ(0,1)(0)

(
1−Q1(0)

λτ 3/2

√
2µu

g(0)

)
, (24)

where

Q1(0) =
2 + τ 2

λτ(1 + τ)
− τ + 2

2λ2τ 2
,

is a corollary of Theorem 1 of [6]. For the expectation E
[
Ru(t) | inf0<s6t Ru(s) < 0

]
at

the time point t = m1u these approximations yield
(√

2u√
µτ

g(0)− 3 + 3τ + τ 2

µ(1 + τ)

) /(
1−Q1(0)

λτ 3/2

√
2µu

g(0)

)
. (25)

Compare the approximation (21) and the corrected approximation (25) to the simu-

lation results. For this end, simulate N risk reserve trajectories and calculate the mean

value of the risk reserve at the time point t = m1u over those among them which fall

below zero at least once within time t = m1u. We report the results in the tables below

omitting fractional parts. It is seen that the accuracy of the approximation (25) appears

better than of (21). For further improvements one has to calculate more terms in the

expansions (23) and (24).

The data in this table demonstrates a reasonably good accuracy. The poorer accuracy

in the following table is due to a smaller τ . Calculation of more correction terms which
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Table 1. λ = µ = 1, t = 99502, u = 500, τ = 0.005, N = 10000.

Simulation runs

1 2 3 4 5 6 7 8

Number of trajectories which

fall below zero

287 327 325 315 296 278 286 311

Empirical mean conditioned

by zero

209 224 242 220 214 207 195 222

Approximation (21) for the

mean

357

Corrected approximation (25)

for the mean

261

are of a smaller order as u grows, but are increasing as τ decreases, becomes here more

important.

Table 2. λ = µ = 1, t = 499500, u = 500, τ = 0.001, N = 1000.

Simulation runs

1 2 3 4 5 6 7 8

Number of trajectories which

fall below zero

189 213 190 222 184 227 396 397

Empirical mean conditioned

by zero

326 369 346 339 368 358 310 335

Approximation (21) for the

mean

798

Corrected approximation (25)

for the mean

442

remark 2. To make the results of Theorem 1 more suitable for calculation of (7)

and (8) the non-uniform bounds instead of merely uniform ones should be obtained.

Otherwise, bounds on large deviations as in [7] are advisable. These results require the

similar technique and will be published elsewhere.
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