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1. Introduction: underwriting process cyclic
due to random surrounding

Long-term variations called “business cycles”, are typically common for the most insurers
and have several potential causes.

Understanding the driving forces of the underwriting cycles is a paramount theoretical and
important practical problem.

� Emphasize is put on cycles (cyclic behavour) attributed to the fluctuations due to ran-
dom surroundings, to volatile interest rates, or to random up- and down-swings of the risk
exposure in the portfolio. Deficiencies are introduced by the exterior ambiguities limited by
the so-called scenarios of nature.

• Such fluctuations can not be foreseen and their dynamics is known deficiently since its
origin used to be exogenous with respect to the insurance industry.

• It causes inevitable errors in the rate making, and irregularly cyclic underwriting process
ensues.

• Adaptive control strategies fighting back cycles due to scenarios of nature are proposed
in the multiperiod framework.
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2. A simplistic model of insurance process and
a volatile scenario of nature

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .

• the state variables wk,

• the control variables uk,

• the control rules γk−1,

• the probability mechanisms of insurance πk.



The 39th International ASTIN Colloquium

Helsinki, Finland 1 – 4 June 2009

• Assume that the annual probability mechanism of insurance πk is induced by the claim
out-pay process Vs(M) = Ms + σ(M)Ws, 0 � s � t, which yields the annual risk reserve
process as

Rs(u, c, M) = u + cs − Vs(M), 0 � s � t,

where u is the initial risk reserve, c is the premium intensity, M is the random claim out-pay

rate, σ(·) is a known function assuming positive values and σ2(M) is the random volatility;
Ws, 0 � s � t, is the standard Brownian motion.

• Development in time: introduce the sequence {W[k]
s , 0 � s � t}, k = 1, 2, . . . , of

independent Brownian motions and the sequence Mk, k = 1, 2, . . . , of the random claim
intensities. Assume that these sequences are independent of each other.

• The annual claim out-pay processes are V
[k]
s (Mk), k = 1, 2, . . . .

• By volatile (homogeneous and with known generic risk) scenario of nature associated
with the multi-period model and the annual mechanisms of insurance we mean the sequence
of i.i.d. claim intensities Mk, k = 1, 2, . . . , with known generic distribution G with support
M = [µmin,∞), 0 < µmin < ∞, i.e., only the lower bound µmin of the claim intensity, or the
most favorable case for the insurer, is a priori known.
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• The adaptive control (u(w), c(w)), where w is the past-year-end capital, satisfies the
α-level integral solvency criterion if

sup
w>0

P
{

inf
0�s�t

Rs(u(w), c(w), M) < 0
}

= sup
w>0

∫
M

ψt(u(w), c(w), m) G(dm) � α.

• The adaptive control (u(w), c(w)), where w is the past-year-end capital, satisfies the
(α1, α2)-solvency criterion with αi ∈ (0, 1/2), i = 1, 2, if for the (1 − α1)-quantile µα1 of
c.d.f. G

sup
w>0,m�µα1

ψt(u(w), c(w), m) � α2.

• The adaptive control (u(w), c(w)) satisfies the (α1, α2)-solvency criterion sharply if

ψt(u(w), c(w), µα1) = α2

for all w > 0.

Theorem 1. Assume that the adaptive control (u(w), c(w)) satisfies the (α1, α2)-solvency
criterion. Then it satisfies the (α1 + α2)-level integral solvency criterion.
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3. Synthesis of the annual adaptive controls

• For αi ∈ (0, 1/2), i = 1, 2, and for the (1 − α1)-quantile µα1 of c.d.f. G the solution
uα2,t(c, µα1) of the equation

ψt(u, c, µα1) = P
{

inf
0�s�t

Rs(u, c, M) < 0 | M = µα1

}
= α2

with respect to u is called α2-level initial capital corresponding to the claim intensity µα1 and
to the premium intensity c.

• The solution cα2,t(u, µα1) with respect to c is called α2-level premium intensity corre-
sponding to the claim intensity µα1 and to the initial capital u.

• By definition, cα2,t(uα2,t(c, µα1), µα1) = c, uα2,t(cα2,t(u, µα1), µα1) = u.
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� The “fair” long-time average premium rate is EM since

EVt(M) = EM · t,
so that the average annual claim amount is equal to the total annual premiums.

• We name equitable those controls (u(w), c(w)) which are holding the risk reserve
large enough to secure solvency, but at the expectation i.e., around the “fair” capital value
uα2,t(EM, µα1). Otherwise, one would rightfully argue that this provision is used to cover the
unexpected.

• The adaptive control (u(w), c(w)), where w is the past-year-end capital, is called
ultimately equitable1, if

ERt(u(w), c(w), µα1) = uα2,t(EM, µα1)

uniformly in w ∈ R+.

• Equity requires premiums well-balanced with claims. Insureds ought to pay premiums
which are sensibly concentrated around the long-run mean value of their losses. In that
sense the customers will not be overcharged, but only in the long run (i.e., in the average
throughout several insurance years), while in the separate insurance years the premiums may
be above or below average.

1It may be also called balanced around the “fair” capital value uα2,t(EM, µα1 ), or targeted at that “fair” capital value.
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For αi ∈ (0, 1/2), i = 1, 2, the adaptive control sensitive to w, is

û(w) =

⎧⎪⎨
⎪⎩

uα2,t(cmin, µα1), w > uα2,t(cmin, µα1),

w, uα2,t(cmax, µα1) � w � uα2,t(cmin, µα1),

uα2,t(cmax, µα1), 0 < w < uα2,t(cmax, µα1),

ĉ(w) =

⎧⎪⎨
⎪⎩

cmin, w > uα2,t(cmin, µα1),

cα2,t(w, µα1), uα2,t(cmax, µα1) � w � uα2,t(cmin, µα1),

cmax, 0 < w < uα2,t(cmax, µα1),

where cmin = µmin, cmax = µα1.

Theorem 2. The control (û(w), ĉ(w)) satisfies the (α1, α2)-solvency criterion sharply
and, consequently, satisfies the (α1 + α2)-level integral solvency criterion.
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A technical drawback of the control (û(w), ĉ(w)) is the necessity to calculate cα2,t(w, µα1)
for each w, i.e., to determine that non-linear function as a whole. Introduce

τ̄α2,t(w) = −w − uα2,t(EM, µα1)

t
,

where EM is the ultimately equitable, or “fair” premium rate. Consider the control with
linearized adaptive premium rates,

ū(w) =

⎧⎪⎨
⎪⎩

uα2,t(cmin, µα1), w > uα2,t(cmin, µα1),

w, uα2,t(cmax, µα1) � w � uα2,t(cmin, µα1),

uα2,t(cmax, µα1), 0 < w < uα2,t(cmax, µα1),

c̄(w) =

⎧⎪⎨
⎪⎩

EM + τ̄α2,t(uα2,t(cmin, µα1)), w > uα2,t(cmin, µα1),

EM + τ̄α2,t(w), uα2,t(cmax, µα1) � w � uα2,t(cmin, µα1),

EM + τ̄α2,t(uα2,t(cmax, µα1)), 0 < w < uα2,t(cmax, µα1),

where cmin = µmin, cmax = µα1.
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• Construct a control with linear adaptive loading, but free of the drawback of uncontrol-
lable solvency (i.e. improve (ū(w), c̄(w))).

• For the level β such that
0 < α2 � β < 1/2,

introduce the strip zone with the lower bound uβ,t = uα2,t(EM, µα1) + zβ,t, where zβ,t < 0 is
a solution of the equation

ψt

(
z + uα2,t(EM, µα1), EM − z

t
, µα1

)
= β (1)

with respect to z, and with a certain upper bound uβ,t such that

uα2,t(cmax, µα1) � uβ,t � uα2,t(EM, µα1) � uβ,t � uα2,t(cmin, µα1).

� Eq. (1) has a unique solution zβ,t < 0 and the explicit expression for zβ,t is obtained.

• There are different ways to select the upper bound uβ,t. For example (recall that cmin =
µmin, cmax = µα1), one may take uβ,t = uα2,t(cmin, µα1), or2 uβ,t = uα2,t(EM, µα1).

2That selection is sensible because the premiums will not be larger than EM (i.e., µβ,t = EM in (2)), and no capital exceeding one least necessary to guarantee the

non-ruin with probability α2 is “frozen” as solvency reserve. For uβ,t selected in that way, |zβ,t| is the width of the strip zone. These reasons may be however unconvincing for

a decision maker with other preferences.



The 39th International ASTIN Colloquium

Helsinki, Finland 1 – 4 June 2009

Zone-adaptive annual control with linearized premiums is

�
u(w) =

⎧⎪⎨
⎪⎩

uβ,t, w > uβ,t,

w, uβ,t � w � uβ,t,

uβ,t, 0 < w < uβ,t,

�
c(w) =

⎧⎪⎪⎨
⎪⎪⎩

µβ,t, w > uβ,t,

EM + τ̄α2,t(w), uβ,t � w � uβ,t,

µ
β,t

, 0 < w < uβ,t,

(2)

where

µβ,t = EM − uβ,t − uα2,t(EM, µα1)

t
,

µ
β,t

= EM − uβ,t − uα2,t(EM, µα1)

t
= EM − zβ,t

t
.

Theorem 3. For 0 < α1 < 1/2, 0 < α2 � β < 1/2, the control (
�
u(w),

�
c(w)) is

ultimately equitable and satisfies the (α1, β)-solvency criterion sharply.
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4. Multi-period model of risk under volatile scenario

• General multiperiodic insurance process with annual accounting and annual control in-
terventions

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .

• Write Pπ,γ{·} for the Markov chain with transition probability P . For brevity, we de-
note by Pπ,γm {·} the conditional distribution Pπ,γ{· | M = m}, where M = {Mk, k =
1, 2, . . . } ∈ M = M∞ is the sequence of i.i.d. random variables and m is its realization.
Evidently, Pπ,γm {·} corresponds to the case when the trajectory m of the scenario of nature
is fixed.

Pπ,γ
{

first ruin in year k,
as starting capital is w

}
=

∫
R×M

G(dm1)Pm1(w; dw
〈1〉
1 × {0}) . . .

. . .

∫
R×M

G(dmk−1) Pµk−1(w
〈1〉
k−2; dw

〈1〉
k−1 × {0})

∫
R×M

G(dmk) Pmk
(w〈1〉

k−1; R × {1}),



The 39th International ASTIN Colloquium

Helsinki, Finland 1 – 4 June 2009

5. Conclusions

Theorem 4 (Solvency). In the homogeneous multi-period diffusion model with starting
capital w ∈ R+, for the homogeneous pure Markov strategy generated by the annual control
(û(w), ĉ(w)),

sup
w∈R+

Pπ,γ
{

first ruin in year k,
as starting capital is w

}
� α1 + α2, k = 1, 2, . . . .

For the homogeneous pure Markov strategy γ generated by the zone-adaptive annual control

with linearized premiums (
�
u(w),

�
u(w)),

sup
w∈R+

Pπ,γ
{

first ruin in year k,
as starting capital is w

}
� α1 + β, k = 1, 2, . . . .

Theorem 5 (Equity). For the homogeneous pure Markov strategy γ generated by the

zone-adaptive annual control with linearized premiums (
�
u(w),

�
u(w)),

E

[
Eπ,γm

(
capital at the end of year k,

as starting capital is w

)]
= uα2,t(EM, µα1).


